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Metagentiana striata is an alpine annual herbaceous plant endemic to the east of the Qinghai–Tibet (Q–T) Plateau
and adjacent areas. The phylogeography of M. striata was studied by sequencing the chloroplast DNA (cpDNA)
trnS–trnG intergenic spacer. Ten haplotypes were identified from an investigation of 232 individuals of M. striata
from 14 populations covering the entire geographical range of this species. The level of differentiation amongst
populations was very high (GST = 0.746; NST = 0.774) and a significant phylogeographical structure was observed
(P < 0.05). An analysis of molecular variance found a high variation amongst populations (76%), with FST = 0.762
(highly significant, P < 0.001), indicating that little gene flow occurred amongst the different regions; this was
explained by the isolation of populations by high mountains along the Q–T Plateau and adjacent areas
(Nm = 0.156). Only one ancestral haplotype (A) was common and widespread throughout the distributional range
of M. striata. The populations of the Hengduan Mountains region of the south-eastern Q–T Plateau showed high
diversity and uniqueness of haplotypes. It is suggested that this region was the potential refugium of M. striata
during the Quaternary glaciation, and that interglacial and postglacial range expansion occurred from this
refugium. This scenario was in good agreement with the results of nested clade analysis, which inferred that the
current spatial distribution of cpDNA haplotypes and populations resulted from range expansion, together with
past allopatric fragmentation events. © 2008 The Linnean Society of London, Botanical Journal of the Linnean
Society, 2008, 157, 125–140.
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INTRODUCTION

The present-day alpine flora of the Qinghai–Tibet
(Q–T) Plateau comprises approximately 1816 species
of seed plants in more than 339 genera. It is esti-
mated that about 33 genera and 33.2% of the total
species are endemic to this high and frigid region at
4200 m above sea-level (Wu, Yang & Fei, 1995; Wu &
Wu, 1996). Little is known of the demographic history

of alpine plants on the Q–T Plateau. The Q–T Plateau
is the youngest, largest, and highest plateau on
Earth, covering more than 2.5 million square kilome-
tres at an average elevation of about 4000 m above
sea-level (Zheng, 1996). It has been through many
periods of uplift in its geological history. Its altitude
reached as high as 3000 m in the Quaternary period,
and it has maintained a trend of rapid uplift, with the
most recent uplift event occurring since the Pliocene
(Shi, Li & Li, 1998). The Q–T Plateau not only had an
important influence on the atmospheric circulation of
the northern hemisphere, but also directly affected
the climatic and eco-environmental evolution of
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China in the Quaternary period (Huairen & Xin,
1985; Zhang, Li & Ben, 2000). Data accumulated
during investigations over the last four decades have
indicated that three to four Quaternary glaciations
occurred on the Q–T Plateau (Shi et al., 1995; Shi,
Zheng & Yao, 1997; Shi, Huang & Yao, 2000; Zheng,
Xu & Shen, 2002). In the Quaternary (approximately
2 million years ago, Ma), the distribution and compo-
sition of the Q–T flora was greatly affected not only by
the cycles of glaciation and interglaciation, but also
by the uplift of the Plateau. The Q–T flora showed an
initial development in the Late Cretaceous or early
Tertiary, and a period of major uplift of the Q–T
Plateau occurred at about 3.6–1.7 Ma (Shi et al.,
1998; Sun & Li, 2003). This latter interval provided
the maximum time for the colonization of montane
and alpine habitats from lowland areas and neigh-
bouring regions. Although the Q–T Plateau is now
mainly covered by alpine steppe and alpine desert,
with various herbaceous taxa as the dominant com-
ponents, its history is still unknown. During the Oli-
gocene, the grasslands were already present, and
gradually changed into semideserts; pollen records
indicate that montane forests mixed with trees from
warm- to cool-temperate regions were also present on
the Q–T Plateau. The present alpine steppe and
alpine desert developed during the late Pliocene with
major uplift of the plateau (Wu, 1980; Zhang, 1983;
Axelrod, Al-Shehbaz & Raven, 1996; Shi et al., 1998).
However, there are other suggestions that the current
dominant alpine steppe and alpine desert developed
during the late Holocene, and that the alpine valley
forest on the eastern rim of the Plateau expanded
westward and upward during this period (Ren &
Beug, 2002). Historical processes, such as bottlenecks,
migrations, habitat fragmentation caused by vicari-
ance, and genetic drift, are often reflected in the
present-day genetic composition of populations, and
permit the reconstruction of the historical biogeogra-
phy of extant species (Hewitt, 1996, 2000, 2004;
Stehlik et al., 2002).

The choice of tools for historical biogeographical
investigations was limited before the development of
molecular methods. Geographical mapping of mac-
rofossils and pollen deposits documented large-scale
plant migrations (Tang et al., 1998; Ren & Beug,
2002). However, the fossil record is limited in taxo-
nomic resolution. In addition, fossils of herbaceous
or alpine plants are especially scarce. Earlier
studies on alpine plants mainly relied on their dis-
tribution pattern (Wu, 1980; Wu & Wu, 1996). Phy-
logeographical studies in plants using molecular
markers have so far focused primarily on Europe
(Hewitt, 2001; Abbott & Comes, 2004; Bartish,
Kadereit & Comes, 2006). Considerable knowledge
is now available for the flora of this continent,

supporting detailed hypotheses on Pleistocene
migration routes and possible ice age refugia
Abbott et al., 2000; Hampe et al., 2003). Yet, there
is little information available to address these
questions for the Q–T Plateau plant species.
Zhang et al. (2005) have suggested that the south-
eastern region of the Q–T Plateau was a possible
refugium during the last glaciation from a phylogeo-
graphical study of a key tree species, Juniperus
przewalskii, endemic to the Q–T Plateau region, and
that range expansion was the major process influ-
encing the present-day spatial distribution of
haplotypes. However, phylogeographical studies on
herbaceous plants of the Q–T Plateau are almost
non-existent.

Metagentiana striata (Maxim.) T. N. Ho, S. W. Liu
and S. L. Chen is an alpine annual herbaceous
plant endemic to the east of the Q–T Plateau and
adjacent areas (Ho & Pringle, 1995; Ho, Chen &
Liu, 2002). Capsules are composed of many seeds
without any special morphological adaptation for
dispersal. The typical habitats of M. striata are
alpine steppe and shrub slopes at altitudes of
2200-4500 m above sea-level (Ho & Pringle, 1995).
Metagentiana striata is one of the most common and
dominant herbaceous plant in the alpine zone in the
east of the Q–T Plateau and adjacent areas. Thus,
this species may be useful as a model for phylogeo-
graphical studies on alpine plants on the Q–T
Plateau.

Since its development by Avise, Arnold & Ball
(1987), phylogeography has become an increasingly
important field of research within biogeography. The
aim originally was to describe the distribution of
genetic variation in space and time. More recently,
the understanding of historical and population pro-
cesses has emerged as a central focus (Abbott et al.,
2000; Abbott & Comes, 2004; Zhang et al., 2005;
Bartish et al., 2006). For this purpose, chloroplast
DNA (cpDNA) markers are used, which, as a result of
a lack of recombination and maternal inheritance in
many angiosperms (Birky, Fuerst & Maruyama, 1989;
Ennos, 1994; Martinez et al., 1997), are usually con-
sidered to provide a more conservative historical view
than nuclear markers. In this paper, the intraspecific
patterns of variation of the cpDNA non-coding frag-
ment trnS (GCU)-trnG (UCC) intergenic spacer
(abbreviated as trnS-trnG hereafter) (Hamilton, 1999)
were investigated in all individuals of populations
sampled throughout the geographical range of
M. striata. The following questions were examined:
(1) What is the phylogeographical structure of
M. striata? (2) Does this structure allow for the infer-
ence of the glacial refugium and postglacial migration
patterns of M. striata on the Q–T Plateau and adja-
cent areas?
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MATERIAL AND METHODS
POPULATION SAMPLING

Fresh leaf material was sampled from the entire
range of distribution of M. striata during the years
2003-04 (Table 1, Fig. 1), and was collected from
about 5–21 individuals per population, with at least
5 m between individuals. In total, samples of 232
individuals from 14 populations were obtained. The
collected leaf material was dried and stored in silica
gel (Chase & Hills, 1991). Voucher specimens of all
populations were deposited at the herbarium of the
North-west Plateau Institute of Biology (HNWP),
Xining, Qinghai Province, China.

DNA EXTRACTION, POLYMERASE CHAIN REACTION,
AND SEQUENCING

Total genomic DNA was extracted from silica gel-
dried leaf material using the 2 ¥ cetyltrimethylammo-
nium bromide (CTAB) procedure (Doyle & Doyle,
1987). Before all of the individuals were sequenced,
70 individuals sampled from 14 different populations
(five individuals from each population) were initially
investigated with four different pairs of universal
primers scanning the cpDNA. The psbB-psbF, rpl20-
5′rps12, trnS-trnG, and trnH-psbA intergenic regions
were amplified and sequenced with these primers
(Hamilton, 1999) in 25 mL reactions. The most
sequence variations were found within the trnS-trnG
region of the 70 individuals examined, and therefore
this region was selected for the full analysis of the
variation of M. striata.

Polymerase chain reactions (PCRs) contained 1 mL
(c. 10–20 ng) of genomic DNA extract, 2.5 mL of
10 ¥ PCR buffer (with 1.5 mM MgCl2), 0.5 mL of 10 mM

deoxynucleoside triphosphates (dNTPs), 1.25 mL of
5 pM of each primer, and 0.25 mL (1.25 U) of Taq DNA
polymerase (CASarray, Shanghai, China) in a total
volume of 25 mL in a Biometra thermal cycler
(Tpersonal 48). The cycling profile was 5 min at 95 °C,
followed by 35 cycles of 30 s at 95 °C, 30 s at 56 °C,
60 s at 72 °C, and a final extension of 72 °C for 6 min.
PCR products were resolved electrophoretically on
1.5% agarose gels run at 200 V in 1 ¥ TAE, visualized
by staining with ethidium bromide, and photographed
under ultraviolet light.

All successfully amplified DNA fragments were
purified using a CASpure PCR Purification Kit, fol-
lowing the manufacturer’s protocol (CASarray), prior
to sequencing. The primers used for amplification
were the same as those employed for sequencing. The
sequencing reactions were programmed at 95 °C for
8 s, followed by 31 cycles of 95 °C for 15 s, 50 °C for
15 s, 60 °C for 1 min and 30 s, and a final extension of
60 °C for 1 min and 30 s, in a Biometra thermal cycler

(Tpersonal 48) using a DYEnamic Dye Terminator
Cycle Sequencing Kit (Amersham), but with the reac-
tion volumes scaled down to 10 mL. The cycle sequenc-
ing products were cleaned using Autoseq 96 plates
(Amersham), and analysed with a MegaBACE DNA
Analysis System (Amersham Biosciences Corp.). All
individuals sampled from each population and both
strands of DNA were sequenced.

ANALYSIS OF GENETIC INDICES

The cpDNA sequences of 232 individuals of 14 popu-
lations were aligned using the CLUSTAL X program
(Thompson et al., 1997), with additional minor
manual adjustments. The different sequences (haplo-
types) of cpDNA were identified using the DNASP 4.0
program (Rozas et al., 2003). The indices of haplotypic
diversity (Hd) and nucleotide diversity (p) (Nei, 1987)
were calculated using the ARLEQUIN package
(version 3.01; Excoffier, Laval & Schneider, 2006).
Calculations of the average gene diversity within
populations (HS), total gene diversity (HT), propor-
tion of total diversity caused by differences between
populations (GST), and the number of substitution
types (NST) were performed according to Pons & Petit
(1996) with the programs PERMUT 2 (http://www.
pierroton.inra.fr/genetics/labo/software; 2000 permu-
tations test) and HAPLODIV. GST depends only on the
haplotype frequency, whereas NST is influenced by
both the haplotype frequency and differences between
haplotypes. A comparison was made between NST and
GST using the U-statistic, which is approximated by a
Gaussian variable by taking into account the covari-
ance of the two values. If NST is significantly higher
than GST, closely related haplotypes occur in the same
populations, indicating the presence of phylogeo-
graphical structure (Pons & Petit, 1996).

An analysis of molecular variance (AMOVA;
Excoffier, Smouse & Quattro, 1992) was implemented
using the ARLEQUIN package. The F statistic (FST)
was calculated, and the significance was tested using
10 000 permutations; the average value of Nm (gene
flow) was estimated on the basis of the FST value. A
pairwise mismatch distribution was used to test for
population expansion (Rogers & Harpending, 1992),
and two neutrality tests with Tajima’s D (Tajima,
1989) and Fu and Li’s D* (Fu & Li, 1993) were
conducted using the DNASP 4.0 program. Tajima’s D
and Fu and Li’s D* indices were used to infer the
nature of sequence evolution (for example, rapid
selection or neutral) and probable historic population
movements. Negative values are expected to occur
when there has been recent population expansion
(Fu, 1997; Knowles et al., 1999) or a selective sweep
(Fu, 1997; Crespi, Rissler & Browne, 2003). In con-
trast, positive values are expected when there has
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been population isolation in which long-term geo-
graphical subdivision enhances the accumulation of
mutational differences between populations, or when
balancing selection dominates (Rogers & Harpending,
1992; Marjoram & Donnelly, 1994).

PHYLOGENETIC ANALYSIS

Phylogenetic relationships amongst the cpDNA hap-
lotypes were evaluated by maximum parsimony (MP)
and maximum likelihood (ML) analyses in PAUP*
4.0b10 (Swofford, 2003), and by Bayesian analysis
with MrBayes 3.1.1 (Huelsenbeck & Ronquist, 2001;
Ronquist & Huelsenbeck, 2003), using four species
(M. pterocalyx, M. rhodantha, Crawfurdia tibetica,
and Tripterospermum cordatum) as outgroups. Gaps
were treated as missing in all analyses. In MP analy-
sis, characters were equally weighted and unordered
(Fitch, 1971). The program Modeltest, version
3.06 (Posada & Crandall, 1998) was used to select

parameters and assumptions for ML analysis. Both
MP and ML heuristic searches with 1000 random
additions of sequence replicates, in combination with
ACCTRAN character optimization, MULPARS, tree
bisection–reconnection (TBR) branch swapping, and
STEEPEST DESCENT on, were utilized to search for
possible multiple islands of most parsimonious trees
(Maddison, 1991). The relative support for relation-
ships between haplotype clades was evaluated by
bootstrap (BS) analysis (Felsenstein, 1985). BS values
were calculated using 1000 replicates of heuristic
searches, each with ten random addition sequence
replicates using TBR and MULPARS on options. A
Bayesian phylogeny was performed with GTR +
G + PINVAR parameters being estimated during the
run, and using the default value of four Markov
chains. Multiple chains can assist in the easier tra-
versal of tree space and can help avoid entrapment in
local topological optima. The Monte Carlo Markov

Figure 1. Sampling sites and geographical distribution of chloroplast DNA (cpDNA) haplotypes (A–J) detected in
Metagentiana striata. The population numbers correspond to those detailed in Table 1. The darkish area indicates the
Qinghai–Tibet Plateau region. The abbreviations QLS, MS, DXS, and LPS represent Qilianshan Mountains, Minshan
Mountains, Daxueshan Mountains, and Liupanshan Mountains, respectively.
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chain (MCMC) length was 1 000 000 generations, and
the chain was sampled every 100 generations. Log-
likelihood values for sampled trees stabilized after
approximately 200 000 generations. Therefore, the
last 8000 sampled trees were used to estimate Baye-
sian posterior probabilities (BPPs), also called Baye-
sian support values, after burn-in that contained each
of the observed bipartitions (Larget & Simon, 1999).

HAPLOTYPE NETWORK AND NESTED CLADE ANALYSIS

Intraspecific relationships amongst the cpDNA
haplotypes were constructed using the program
NETWORK (Weir, 1996) with the aid of MINSPNET
(Excoffier & Smouse, 1994). The haplotype network
was nested following the procedure described in
Templeton, Boerwinkle & Sing (1987) and Templeton,
Crandall & Sing (1992) by first collapsing haplotypes
at the tips of the networks (zero-step clade) one muta-
tional step backward to form a one-step clade; this
procedure was repeated until the entire nested cla-
dogram was formed. For each clade (haplotype), the
topological situation was specified with I or T, where
I and T are the interior (ancestral) and tip (recent)
clades or haplotypes. The resulting hierarchical struc-
ture of the clades reflects evolutionary time, with the
lower nesting clades associated with more recent evo-
lutionary events relative to the higher nesting clades
(Crandall, 1996). To evaluate the relative contribu-
tions of historical events vs. population processes in
shaping the observed genetic patterns, a nested clade
analysis was conducted (Templeton, Routman & Phil-
lips, 1995; Templeton, 1998) on the nested cladogram.
This analysis examines the geographical association
between haplotypes or clades and sampling locations,
using both a simple categorical test and a more elabo-
rate geographical distance test. The former test per-
mutes clades against sample locations as categorical
variables, excluding distance data. The latter test
incorporates geographical distance data to estimate
three statistics, namely within-clade distances (Dc)
that measure the geographical spread of a clade,
nested clade distances (Dn) that measure the geo-
graphical distance of a clade from the geographical
centre of the nested clades, and contrast (I–T)
between the interior and tip clades. The 95% signifi-
cance level of these estimates was obtained through
comparisons against those generated by a minimum
of 10 000 random permutations. All calculations were
performed in GEODIS 2.5 (Posada, Crandall &
Templeton, 2000). The revised version of the inference
key for nested clade analysis (Templeton, 2004) was
used to infer whether the observed genetic clade
patterns are best attributed to historical events,
such as range expansion, or allopatric or past
fragmentation.

RESULTS
SEQUENCE VARIATION

The lengths of the unaligned trnS-trnG sequences
varied from 560 to 590 base pairs (bp) by screening
232 samples in 14 populations across the entire geo-
graphical range of M. striata. The total alignment of
this region was 590 bp in length and identified ten
different sequences (haplotypes). The ten cpDNA hap-
lotypes were identified alphabetically (A–J), and the
haplotype compositions and frequencies in each popu-
lation are presented in Table 1 with geographical
distributions illustrated in Figure 1. Variable sites
amongst the ten haplotypes were observed with nine
nucleotide substitutions and four indels (Table 2). The
nine nucleotide substitutions were mainly four tran-
sitions of A↔G (157 bp site) and C↔T (sites at 442,
489, and 497 bp) and five transversions of A↔C (sites
at 71 and 328 bp), T↔G (sites at 269 and 403 bp), and
A↔T (366 bp site). Four indels of 10/13/1/20 bp were
present from 89/315/328/381 bp to 98/327/328/400 bp,
respectively. The nucleotide percentage of A and T
was 69.5% for all sequences of trnS-trnG, and this
phenomenon was in agreement with the nucleotide
composition in most cpDNA intergenic spacers (Li,
1997; Chiang et al., 2001; Lu et al., 2002). The ten
cpDNA haplotypic sequences, together with four
outgroup individuals, are deposited in GenBank
(Accession numbers EU552044-EU552053).

DIVERSITY INDICES AND POPULATION

DIFFERENTIATION

In the 14 populations of M. striata, haplotype A was
widely distributed in eight populations and had the
highest frequency (0.595), whereas haplotype J had
the lowest frequency (0.009). The nucleotide diversity
(p) within the 14 populations ranged from zero to
0.039, with a total value of 0.014 (Table 1). When
compared with other plants that occur in Arctic-
Alpine regions, the nucleotide diversity of M. striata
(p = 0.014) was less than that of Draba aizoides
(p = 0.035, from trnL-trnF analysis) (Widmer & Bal-
tisberger, 1999) and Vaccinium uliginosum (p = 0.063,
from trnL-trnF and trnS-trnG analyses) (Alsos et al.,
2005). Population 9, located in the Hengduan Moun-
tains region of the south-eastern Q–T Plateau, had
the highest level of nucleotide diversity (p = 0.039),
and population 12 in the Hengduan Mountains region
also had high levels of nucleotide diversity (p = 0.005).
The haplotypic diversities (Hd) within the 14 popula-
tions ranged from zero to 0.679, with a total value of
0.620 (Table 1). Population 9 containing three haplo-
types was the most variable population (Hd = 0.679).
Others, such as populations 10 (Hd = 0.476) and 12
(Hd = 0.490) in the Hengduan Mountains region, also
contained high haplotypic diversities.

130 S. CHEN ET AL.

© 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 157, 125–140



The average gene diversity within populations (HS),
total gene diversity (HT), and the two coefficients of
genetic differentiation (GST and NST) over all popula-
tions were 0.142, 0.558, 0.746, and 0.774, respectively.
A permutations test showed that NST was significantly
higher than GST (P < 0.05) (Table 3). It indicated that
the level of differentiation amongst populations was
very high (GST = 0.746), that closely related haplo-
types occurred in the same population, and the pres-
ence of a phylogeographical structure in the entire
geographical range. AMOVA showed that about 76%
of the genetic variation occurred amongst popula-
tions, whereas approximately 24% of the variation
occurred within populations in the entire distribution
region; the FST value was 0.762 and highly significant
(P < 0.001) (Table 4). At the species level, the esti-
mated value of the average gene flow (Nm) amongst
populations was very low (Nm = 0.156; see Table 3).
The test values for neutrality on the total data
set (Tajima’s D = -0.483, P > 0.10; Fu and Li’s
D* = -0.385, P > 0.10) were insignificant negative

values, indicating that there may have been recent
population expansion of M. striata on the Q–T
Plateau and adjacent areas. The test of mismatch
distribution indicated that it departed from the expec-
tation by showing a single main peak (Fig. 2), which
further confirmed that populations in the entire geo-
graphical region had undergone recent expansion.

PHYLOGENETIC ANALYSIS AND NESTED

CLADE ANALYSIS

The total aligned sequences of the ten haplotypes of
cpDNA trnS-trnG, including the four outgroups, con-
tained 676 sites, 592 of which were constant and 48
were parsimony informative. MP analysis produced
two most parsimonious trees, with 89 steps, a consis-
tency index (CI) of 0.966, and a retention index (RI) of
0.961. Figure 3 illustrates one most parsimonious
tree, which has the same topology as the ML tree
(-ln L = 1389.5823) and the Bayesian majority rule
consensus tree (not shown). Two clades with moderate

Table 2. Variable sites of the aligned sequences of the chloroplast DNA (cpDNA) fragment trnS-trnG in the ten
haplotypes of Metagentiana striata. Sequences are numbered from the 5′ to the 3′ end in the region

trnS-trnG region
Nucleotide position

7
1

8
9

1
5
7

2
6
9

3
1
5

3
2
8

3
6
6

3
8
1

4
0
3

4
4
2

4
8
9

4
9
7

Haplotype
Type A C + A T # A A * G C C C
Type B C + G T # A A – T C C C
Type C A – G T – – A * G C T C
Type D C – G T # A A – T C C C
Type E C + G T # A A * T C C C
Type F C + G G # A A * G C C C
Type G C – G T # A A * G C C C
Type H C + A T # A A * G T C C
Type I C + A T # C T * G C C T
Type J C + A T # A T * G C C T

The symbols +, #, *, and – denote different insertions/deletions: +, ATTATATAGA; #, AGATTCTTTTAAT; *, GGAATA
CAAAATCTTCAAGC.

Table 3. Estimates of the average gene diversity within populations (HS), total gene diversity (HT), interpopulation
differentiation (GST), and number of substitution types (NST) (standard errors in parentheses) within the total distribution
of Metagentiana striata calculated with PERMUT2 (using a test with 2000 permutations) and HAPLODIV. Nm (gene flow)
was estimated by the ARLEQUIN program based on the FST value (standard errors in parentheses)

No. of
populations

Arithmetic
mean

Harmonic
mean

No. of
alleles HS HT GST NST Nm

14 16.57 13.12 10 0.142 (0.064) 0.558 (0.142) 0.746 (0.089) 0.774 (0.087) 0.156
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Table 4. Analysis of molecular variance (AMOVA) for 14 populations of Metagentiana striata

Source of variation d.f. SS VC Variation (%) Fixation index

Among populations 13 54.530 0.250 76.18 FST = 0.762*
Within populations 218 17.065 0.078 23.82
Total 231 71.595 0.329

d.f., degrees of freedom; SS, sum of squares; VC, variance components.
*P < 0.001.

Figure 2. Mismatch distribution established for sequence data of the chloroplast DNA (cpDNA) fragment trnS-trnG from
232 individuals of Metagentiana striata in the entire sampling region. The thin line represents the expected mismatch
distribution of a stationary population, and the broken line represents the observed mismatch distribution from
segregation sites of the 232 aligned individual sequences of cpDNA trnS-trnG in M. striata.

Haplotype J 

Haplotype A 

Haplotype H 

Haplotype B 

Haplotype D 

Haplotype E 

Haplotype F 

Haplotype G 

Haplotype C 

Metagentiana pterocalyx 

Tripterospermum cordatum

Crawfurdia tibetica 

Metagentiana rhodantha 

100/100/100

100/100/100

98/60/64

100/83/85

99/63/62

100/100/100

Haplotype I 

Figure 3. One of the two most parsimonious trees (length, 89; consistency index, 0.966; retention index, 0.961) based on
the ten chloroplast DNA (cpDNA) haplotypes. This has the same topology as the 50% Bayesian majority rule consensus
tree and best maximum likelihood tree (likelihood score, -ln L = 1389.5823). Numbers above the branches indicate the
Bayesian probabilities (BPPs), maximum parsimony and maximum likelihood bootstrap values, respectively, based on
1000 replicates.
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BS support were detected in the most parsimonious
tree (60% and 63%). However, relationships between
the clades were not well resolved. One clade con-
tained four haplotypes (A, H, I, and J) (98%, 60%, and
64%; Fig. 3). Haplotype A was dominant in popula-
tions of the north-eastern (Qilianshan Mountains,
Fig. 1) and eastern regions of the Q–T Plateau,
whereas haplotypes I and J were found only in popu-
lation 14 of the Hengduan Mountains region on the
south-eastern Q–T Plateau, and haplotype H was
found only in population 12 of the Hengduan Moun-
tains region (Fig. 1). Another clade contained haplo-
types B, D, and E (99%, 63%, and 62%; Fig. 3).
Haplotype E was dominant in population 10, whereas
haplotype B and D were restricted to populations 8
and 9 in the Hengduan Mountains region (Fig. 1). The
remaining haplotypes were not contained in any well-
supported clades (Fig. 3). However, haplotype F was
distributed only in population 11 of the adjacent
alpine region (Liupanshan Mountains, Fig. 1) of the
Q–T Plateau, whereas haplotypes C and G were found
only in populations 9 and 12, respectively, of the
Hengduan Mountains region (Fig. 1).

The nested cladogram of cpDNA haplotypes (A–J) of
M. striata yielded two main clades (2-1 and 2-2;
Fig. 4) that almost corresponded to the most parsimo-
nious tree (Fig. 3). Clade 2-1 contains subclades 1-1
with haplotypes I and J, and subclade 1-2 with hap-
lotypes A and H. The most common haplotype A is
fixed in 11 populations of the entire geographical
range. Clade 2-1 is connected to clade 2-2 by a one-
step mutation. Clade 2-2 contains three subclades
(1-3, 1-4, and 1-5). Haplotypes C and G are nested
within subclade 1-3, haplotype F is nested within
subclade 1-4, and haplotypes B, D, and E are nested
within subclade 1-5. In this clade, the haplotypes,
except for F, are distributed in the Hengduan Moun-

tains region of the south-eastern Q–T Plateau. Obvi-
ously, the interior haplotypes A, E, and G are likely to
represent ancestral haplotypes, and the other haplo-
types (B, C, D, F, H, I, and J) were possibly derived
recently in our present analysis. The results are
presented in Table 5, including two estimations of
geographical distance parameters (Dc, Dn) for each
haplotype, clade, and contrast (I–T) at different cla-
distic levels, as well as significance values (P) in the
nested clade analysis. According to the inference key,
the corresponding chain of inferred historical events
for each nested clade showing significant spatial geo-
graphical structure (as evidenced by two distance
parameters; Table 5) is provided in Table 6. However,
the results were ambiguous for clades 1-1 and 1-4
because statistically significant geographical struc-
tures were unresolved as a result of the rarity of the
subclades (haplotypes). For the five significant clades,
geographical sampling and tip/interior status were
sufficient to yield conclusive outcomes. With regard to
the entire nested clade, the historical event that
shaped the present-day spatial distribution of all hap-
lotypes was range expansion, whereas the distribu-
tions of haplotypes in clades 1-2 and 2-2 were shaped
by past fragmentation, and in clades 1-3, 1-5, and 2-1
by allopatric fragmentation (Table 6).

DISCUSSION
PHYLOGEOGRAPHICAL STRUCTURE IN M. STRIATA

Although the cpDNA of Pinaceae and Cupressaceae
was paternally inherited by pollen (Wagner, 1992;
Zhang et al., 2005; Meng et al., 2007), other studies
have suggested that cpDNA is maternally inherited
via seed. The maternal inheritance leads to very
low gene flow and high differentiation amongst

Figure 4. Nested cladogram of the chloroplast DNA (cpDNA) haplotypes (A–J) of Metagentiana striata. One-step clades
are indicated by ‘1-x’ and two-step clades by ‘2-x’, where x is the number assigned to the clades within each level. ‘0’
represents an absent haplotype, and the capital letters are the identified haplotypes. The numbers above or to the right
of each connection represent the mutational steps.

PHYLOGEOGRAPHY OF METAGENTIANA STRIATA 133

© 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 157, 125–140



T
ab

le
5.

N
es

te
d

cl
ad

is
ti

c
an

al
ys

is
of

tw
o

ge
og

ra
ph

ic
al

di
st

an
ce

s
fo

r
ch

lo
ro

pl
as

t
D

N
A

(c
pD

N
A

)
h

ap
lo

ty
pe

s
(A

–J
)

of
M

et
ag

en
ti

an
a

st
ri

at
a

ba
se

d
on

th
e

n
es

te
d

cl
ad

og
ra

m
gi

ve
n

in
F

ig
u

re
4

Z
er

o-
st

ep
cl

ad
es

O
n

e-
st

ep
cl

ad
es

Tw
o-

st
ep

cl
ad

es

H
ap

P
os

D
c

P
D

n
P

C
la

de
P

os
D

c
P

D
n

P
C

la
de

P
os

D
c

P
D

n
P

I
T

1-
1

T
0.

00
0 S

0.
00

0
44

4.
45

L
0.

00
0

2-
1

T
24

3.
96

S
0.

00
3

25
7.

26
0.

29
8

J
I

A
I

21
1.

08
S

0.
01

6
21

2.
13

S
0.

00
9

1-
2

I
21

3.
10

S
0.

00
0

22
3.

40
S

0.
00

0
H

T
0.

00
S

0.
01

3
32

7.
07

L
0.

00
8

I-
T

21
3.

10
L

0.
00

0
-2

21
.0

5 S
0.

00
0

I–
T

21
1.

08
L

0.
01

3
-1

14
.9

4 S
0.

00
8

C
T

0.
00

S
0.

00
5

21
.6

6 S
0.

00
5

1-
3

T
32

.4
8 S

0.
00

1
17

5.
10

0.
24

5
2-

2
I

18
6.

55
S

0.
00

0
24

9.
60

0.
25

7
G

I
0.

00
0.

38
7

64
.9

6 L
0.

00
5

I-
T

-5
7.

41
S

0.
00

0
-7

.6
6

0.
26

9
I–

T
0.

00
0.

38
7

43
.3

1 L
0.

00
5

F
T

1-
4

I
0.

00
S

0.
00

0
28

4.
00

L
0.

00
0

B
I

16
.1

8 S
0.

00
0

72
.9

5 S
0.

00
0

1-
5

T
10

9.
13

S
0.

00
0

14
5.

69
S

0.
00

0
D

T
0.

00
S

0.
02

2
10

5.
82

0.
45

8
I-

T
-9

1.
77

S
0.

00
4

13
1.

65
L

0.
00

0
E

I
0.

00
S

0.
00

0
18

0.
92

L
0.

00
0

I–
T

11
.6

8
0.

39
4

-2
.8

8
0.

40
2

C
la

de
s

de
si

gn
at

ed
as

in
F

ig
u

re
4.

H
ap

,
h

ap
lo

ty
pe

s;
I,

in
te

ri
or

;
I–

T,
av

er
ag

e
di

ff
er

en
ce

be
tw

ee
n

in
te

ri
or

an
d

ti
p

cl
ad

es
fo

r
bo

th
di

st
an

ce
m

ea
su

re
s;

P
os

,
po

si
ti

on
;

T,
ti

p.
Te

st
s

de
te

rm
in

e
w

h
et

h
er

th
e

w
it

h
in

-c
la

de
(D

c)
or

n
es

te
d

cl
ad

e
(D

n
)

ge
og

ra
ph

ic
al

di
st

an
ce

s
ar

e
si

gn
ifi

ca
n

tl
y

la
rg

e
( L

)
or

si
gn

ifi
ca

n
tl

y
sm

al
l

( S
)

ba
se

d
on

10
00

0
ra

n
do

m
iz

at
io

n
s

of
th

e
da

ta
,

w
it

h
th

e
le

ve
l

of
si

gn
ifi

ca
n

ce
P

<
0.

05
,

w
h

er
e

P
is

th
e

pr
ob

ab
il

it
y

of
a

ra
n

do
m

ly
ge

n
er

at
ed

va
lu

e
be

in
g

eq
u

al
to

or
la

rg
er

(s
m

al
le

r)
th

an
th

e
ob

se
rv

ed
va

lu
e.

134 S. CHEN ET AL.

© 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 157, 125–140



populations in many angiosperms (Ikeda et al., 2006;
Koch et al., 2006). For the herbaceous species
M. striata, very low average gene flow amongst popu-
lations (Nm = 0.156) and very high estimates of inter-
population differentiation (GST = 0.746; NST = 0.774)
were recorded by examining the cpDNA haplotypes of
232 individuals from 14 populations (Table 3). This
was consistent with the results of AMOVA (Table 4),
which showed high genetic variation amongst popu-
lations (76%) and significant interpopulation differen-
tiation (FST = 0.762; P < 0.001). Consequently, the
results suggest that cpDNA shows a maternal mode
of inheritance in M. striata. A very low gene flow
occurred amongst populations because of the limited
dispersal ability of seeds, as well as the vicariance
and habitat fragmentation between populations by
the high mountains of the Q–T Plateau and adjacent
areas (Zhang et al., 1997). Moreover, NST is signifi-
cantly higher than GST (P < 0.05), indicating the pres-
ence of a significant phylogeographical structure of
M. striata, and that the closely related haplotypes
occur in the same population in the entire geographi-
cal range. The related haplotypes A and H, B and D,
and I and J co-occur in populations 12, 9, and 14,
respectively, of the Hengduan Mountains region of the
south-eastern Q–T Plateau.

DEMOGRAPHIC HISTORY OF M. STRIATA

In our study, the ancestral haplotypes (A, E, and G)
existed together in the population of the Hengduan
Mountains region of the south-eastern Q–T Plateau.
The coexistence of several ancestral haplotypes in a
restricted geographical area can result from two dif-
ferent, mutually non-exclusive scenarios. Firstly, it is
possible that a particular region has accommodated
populations over a long time, and that the ancestral
haplotypes survived in situ. In this case, we would be
dealing with a refugium. Secondly, it could be that the
clades arrived postglacially by means of dispersal

from one or several adjacent regions. In this case, we
would be dealing with a recolonized area or an area of
secondary contact (Pinceel et al., 2005). Although both
scenarios might produce similar genetic signatures, it
is argued that the first scenario (glacial refugium) is
more parsimonious than the hypothesis of postglacial
recolonization in the Hengduan Mountains region for
the following reasons. Firstly, high cpDNA haplotype
diversities were observed in most populations of
the Hengduan Mountains region (population 9,
Hd = 0.679; population 10, Hd = 0.476; population 12,
Hd = 0.490; population 14, Hd = 0.292; Table 1), and
there was very high haplotype uniqueness in this
region (haplotypes E, C, D, G, H, I, and J; Fig. 1).
Petit et al. (2003) concluded that plant populations in
refugial areas show high genetic divergence and
uniqueness. Secondly, the Hengduan Mountains
range of the south-eastern Q–T Plateau is known not
only as an important Tertiary centre of species diver-
sification and a highly concentrated harbour of
palaeo- and neo-endemics (Tao, 1992; Ying, Boufford
& Zhang, 1993; Wang & Zhang, 1994), but also as an
important glacial refugium of many plants (Wu, 1988;
Nie et al., 2005; Zhang et al., 2005; Meng et al., 2007),
including some taxa of Laurasian angiosperms, such
as species of Rhododendron, Rhodiola, Gentiana
(including Metagentiana; Ho et al., 2002), and Cirae-
aster (Wang, 1992). Therefore, it is suggested that the
Hengduan Mountains region was possibly a potential
refugium (supporting the first scenario) of M. striata
during the Quaternary glaciation. In addition, most
haplotypes of cpDNA were pooled in the Hengduan
Mountains region, whereas only an ancestral haplo-
type (A) was distributed in the north-east (Qilianshan
Mountains region) and east of the Q–T Plateau plat-
form (Fig. 1). The populations (1, 2, 3, 4, 5, 6, 7, and
13) of M. striata with haplotype A might have expe-
rienced a series of bottlenecks following the founder
effect to give a very low haplotype diversity (Hd = 0;
Table 1) on the Q–T Plateau platform when recoloni-

Table 6. Chain of inference from the nested clade analysis of the chloroplast DNA (cpDNA) data set of Metagentiana
striata following an updated version of Templeton’s (2004) inference key for nested haplotype tree analysis of geographical
distances. Permutational chi-squared probabilities for the geographical structure of the clades identified in Figure 4 from
10 000 resamples. P is the probability of a randomly generated chi-squared statistic being greater than or equal to the
observed chi-squared

Clade Chi-squared statistic P Clade key Inferences

1-2 22.358 0.036 1-2-3-5-15-No Past fragmentation
1-3 12.000 0.005 1-19-No Allopatric fragmentation
1-5 55.336 0.000 1-19-No Allopatric fragmentation
2-1 149.563 0.000 1-19-No Allopatric fragmentation
2-2 107.074 0.000 1-2-3-5-15-No Past fragmentation

Total cladogram 204.718 0.000 1-2-11-12-No Range expansion
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zation occurred from the refugium (Hengduan
Mountains region) during the interglaciation and
postglaciation (Hewitt, 1996, 2000; Avise, 2000).
Meanwhile, many recently derived haplotypes (for
example, haplotypes B, D, H, and I) only showed one
mutational step from ancestral haplotypes, indicating
that these haplotypes possess limited dispersal ability
and restricted regions (Hwang et al., 2003). The above
scenario is supported by the suggestion that the
Hengduan Mountains region of the south-eastern
Q–T Plateau was the refugium of plants on the
Plateau platform during the Quaternary glaciation,
and these plants expanded from the refugium during
interglacial and postglacial periods (Wu, 1979; Zhang
et al., 2005).

One of the main origins of cpDNA evolution is from
site mutations and short insertion/deletions (indels)
(Clegg et al., 1994). In Table 2, there were nine nucle-
otide mutations and four short indels at 12 variable
sites of the ten cpDNA haplotypes of the trnS-trnG
fragment of M. striata. The results indicate that the
intraspecies mutational rate is low, and that the
genetic differentiation of M. striata may have
occurred over a short time, as Chen et al. (2005) have
suggested that the divergence time of M. striata was
during the late Tertiary (about 6.2–3.3 Ma) based on
the molecular clock hypothesis. Consequently, we
propose that the ancestor species of M. striata devel-
oped in the Hengduan Mountains region during the
late Tertiary (Chen et al., 2005) and occupied a wider
distribution in the subsequent rapid radiation (north-
ernmost to the Qilian Mountains and easternmost
to the Liupan Mountains) (Fig. 1). This scenario
is strongly supported by the present alpine steppe
and alpine desert, which developed during the late
Pliocene with major uplift of the Q–T Plateau (Wu,
1980; Zhang, 1983; Axelrod et al., 1996; Shi et al.,
1998). However, the Quaternary glaciation might
have resulted in the extinction of M. striata in the
north-east (Qilian Mountains region) and east of
the Q–T Plateau platform, but with survival in the
refugium (Henduan Mountains region). During the
interglacial and postglacial periods, range expansion
took place from the refugium, and M. striata recolo-
nized the Plateau platform. Analogous scenarios have
been described by a series of studies (Hewitt, 1993;
Lewis & Crawford, 1995; Templeton, 1998; Marshall,
Newton & Ritland, 2002; Dobes, Mitchell-Olds &
Koch, 2004; Cheng, Hwang & Lin, 2005; Watanabe,
Kajita & Murata, 2006; Afzal-Rafii & Dodd, 2007).

The nested clade analysis also supported the above
viewpoints. With regard to the entire nested cla-
dogram, range expansion, inferred as a historical
event, shaped the current spatial distribution of all
haplotypes. Nested clade analysis indicated that,
during the interglaciation and postglaciation, the

populations of M. striata recolonized from the ref-
ugium to the Q–T Plateau platform (north-eastern
and eastern Plateau) as a result of a range expansion
event (Zhang et al., 2005). Likewise, the test results of
Tajima’s D and Fu and Li’s D* indices, which showed
negative values, as well as the mismatch distribution
of a single main peak, were completely in agreement
with this inference, further confirming that recent
population expansion has occurred in the entire geo-
graphical region. Past fragmentation events were also
observed in clades 1-2 and 2-2 (Table 6). In clade 1-2,
population 12 (with related haplotypes A and H) was
isolated from population 10 (with haplotype A) of the
north-eastern edge of the Hengduan Mountains
region (Fig. 4) by large mountains (Minshan Moun-
tains; Fig. 1). The large mountains blocked the gene
flow via seeds between the two populations, as did the
major uplift of the Q–T Plateau since the late
Pliocene (Tao, 1992), and resulted in the past frag-
mentation event. With regard to clade 2-2, popula-
tions 8, 9, 10, and 12 of the Hengduan Mountains
region and population 11 (unique haplotype F) of the
Liupanshan Mountains region (Figs 1, 4) were sepa-
rated by the large mountains of the Q–T Plateau and
adjacent alpine region in the late Pliocene, resulting
in the past fragmentation event. However, allopatric
fragmentation events were inferred within clades 1-3,
1-5, and 2-1 (Table 6). From Figure 4, haplotypes C
and G were nested in clade 1-3, haplotypes B, D, and
E were nested in clade 1-5, and haplotypes A, H, I,
and J were nested in two subclades (1-1 and 1-2) of
clade 2-1. Based on the geographical distributions of
these haplotypes (Fig. 1), it is suggested that allopat-
ric fragmentation occurred amongst populations 9, 10,
12, and 14, isolated by the Minshan Mountains and
Daxueshan Mountains (Fig. 1), during the intergla-
ciation and postglaciation. In addition, population 8
with haplotype B was possibly derived from popula-
tion 9 by range expansion. As stated above, range
expansion from the Hengduan Mountains region (ref-
ugium) was the main historical process in the popu-
lation of the Q–T Plateau platform, and allopatric and
past fragmentation events have always occurred
amongst populations in the Hengduan Mountains
region and adjacent areas. The present spatial distri-
butions of cpDNA haplotypes and populations of
M. striata were shaped by our nested clade analysis.

Although the above findings on the herbaceous
species M. striata were basically similar to the results
obtained for two key tree species, Juniperus przewal-
skii and Picea crassifolia, which occur in the Q–T
Plateau region (Zhang et al., 2005; Meng et al., 2007),
this does not represent the demographic history of all
species in the Q–T Plateau flora, because many
earlier comparative studies have suggested that each
species has its own unique history of glacial isolation
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and interglacial or postglacial range expansion
(Taberlet et al., 1998; Weider & Hobæk, 2000;
Brochmann et al., 2003). Thus, in a strict sense,
numerous species in the Q–T Plateau flora should be
tested in future work.
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