Molecular characterization of LMW glutenin genes from Taeniatherum Nevski

Chang Han \cdot Ze-Hong Yan \cdot Shou-Fen Dai \cdot
Deng-Cai Liu • Yu-Ming Wei -
You-Liang Zheng \cdot Xiu-Jin Lan \cdot Yuan-Ying Peng

Received: 11 July 2010/Accepted: 15 November 2010/Published online: 2 December 2010
© Springer Science+Business Media B.V. 2010

Abstract

We characterized 45 LMW glutenin genes from three diploid species of Taeniatherum using 63 primer combinations, designed according to 264 genes reported in wheat and related species. The genes had $909-1,059 \mathrm{bp}$ nucleotides and 301-351 amino acids. The deduced peptides shared similar structures with LMW-m proteins of wheat. The 45 genes shared $77.2-99.7 \%$ identities in peptide sequence among each other and 60.0-82.0\% identities to proteins from wheat and related species. They were divided into five types according to the N -terminals, starting with METSCIP-, METSRVP-,

Electronic supplementary material The online version of this article (doi:10.1007/s10722-010-9640-y) contains supplementary material, which is available to authorized users.
C. Han • Z.-H. Yan (\triangle) • S.-F. Dai -
D.-C. Liu • Y.-M. Wei • Y.-L. Zheng •
X.-J. Lan • Y.-Y. Peng

Triticeae Research Institute, Sichuan Agricultural University, Wenjiang District, No. 555, Northeast Road, 611130 Chengdu, Sichuan, China
e-mail: zhyan104@163.com
Z.-H. Yan • S.-F. Dai • D.-C. Liu • Y.-M. Wei •
Y.-L. Zheng • X.-J. Lan • Y.-Y. Peng

Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, 625014 Yaan, Sichuan, China
D.-C. Liu

Northwest Plateau Institute of Biology, Chinese Academy of Science, 810001 Xining, Qinghai, China

METGRIP-, METGSIP- and VETSCIP-. The last three and some other structural domain variations were not reported previously in the Triticeae. Thirtythree genes encoded full mature proteins with intact ORFs, whereas the other 12 were pseudogenes with incomplete ORFs, in-frame stop codons or frameshift mutations. Phylogenetic analysis showed that orthologous genes from Taeniatherum were more similar to those in the B and D genomes than in the A genome.

Keywords Gene sequencing • LMW glutenin • Sequence analysis • Taeniatherum

Abbreviations

INDELS Insertions and deletions
ORF Open reading frame
LMW Low molecular weight

Introduction

Glutenins and gliadins are the major storage proteins determining end-use quality of wheat flours (Payne et al. 1987; D'Ovidio and Masci 2004). The glutenins can be divided into high molecular weight (HMW) glutenins of 70,000-90,000 Da and low molecular weight (LMW) glutenins of 20,000-45,000 Da (D'Ovidio and Masci 2004). LMW glutenins are
grouped as B, C, and D types based on electrophoretic mobilities and isoelectric points. They are also classified as LMW-i (isoleucine), LMW-m (methionine), and LMW-s (serine) types based on the first amino acid residue in the N -terminal of mature proteins (Cloutier et al. 2001; Lew et al. 1992; Masci et al. 1993). In hexaploid wheat (Triticum aestivum L. $2 \mathrm{n}=6 \mathrm{x}=42$, AABBDD), LMW glutenins, encoded by the orthologues Glu-A3, $G l u-B 3$, and Glu-D3 on chromosome arms 1AS, 1BS and 1DS, respectively (Gupta and Shepherd 1990), account for $\sim 60 \%$ of the total endosperm storage proteins. The number of LMW glutenin genes in bread wheat was estimated to be as high as 35-40 (Harberd et al. 1985; Sabelli and Shewry 1991; Cassidy et al. 1998).

The LMW glutenins are important quality determinants of wheat flours and the genes involved are well studied. Moreover, some progress has been made in molecular characterization of LMW glutenin genes from various Triticeae species, including Aegilops spp. (Johal et al. 2004; Li et al. 2008), Agropyron elongatum (Luo et al. 2005), Secale sylvestre (Shang et al. 2005), Crithopsis delileana (Guo et al. 2008), Hordeum chilense, and H. brevisubulatum (Pistón et al. 2005; Hou et al. 2006). Sequence comparisons of these genes revealed some differences between wheat and its relatives. For example, some genes from H. chilense and A. elongatum lack the N-terminal regions in the predicted mature proteins (Luo et al. 2005; Pistón et al. 2005). To further understand the evolution of LMW glutenin genes in the Triticeae and to better utilize them in wheat quality improvement, more genes in wild cereals need to be analyzed.

The Taeniatherum Nevski (TaTa, $2 \mathrm{n}=2 \mathrm{x}=14$) genus is a member of the Triticeae. Biosystematically, it is very distantly related to wheat (Frederiksen 1986; Frederiksen and Bothmer 1986). It contains three diploid species, T. caput-medusae, T. crinitum and T. asperum. However, the LMW glutenin genes in these species are not reported. To exploit potentially new sources of LMW glutenins that can be used for wheat end-use quality improvement and for understanding the relationships among orthologous genes among Triticeae species, we firstly describe the isolation and characterization of LMW glutenin genes from Taeniatherum spp.

Materials and methods

Materials and DNA extraction

Three T. caput-medusae (PI 598389, PI 577708, and PI 577710), three T. crinitum (PI 561094, PI 204577, and PI 220590), and two T. asperum accessions (PI 561091 and PI 561092) used in this study were derived from Turkey (except for PI 220590 from Afghanistan) and provided by the USDA-ARS (http://www.ars-grin.gov/) germplasm bank. Seeds were germinated in darkness at $23^{\circ} \mathrm{C}$ for one week before planting in pots. Young leaves were harvested and crushed into powder after freezing in liquid nitrogen. Total genomic DNA was extracted using $2 \times$ CTAB method (Yan et al. 2002).

Primer design, PCR and sequencing
For designing DNA primers for the isolation of LMW glutenin genes from Taeniatherum spp., the nucleotide and amino acid sequences of LMW glutenin genes from wheat and related species were collected from the GenBank database (http://www.ncbi.nih. nlm.gov/). Based on the amino acid at the beginning signal peptide or the end of the C-terminals, these genes were classified into different groups. Within a group, the nucleotides were further used for polymorphism site screening. PCR primers were then designed according to the amino acids in each group. For polymorphic nucleotide sites within a group, degenerate primers were designed. Seven forward and nine reverse primers were designed based on the gene types (Table 1). These primers formed 63 combinations. They were used for amplifying the genomic DNA of the eight accessions Taeniatherum spp.

PCR amplifications of LMW glutenin gene fragments were conducted in total volumes of $50 \mu \mathrm{l}$ in a PTC-200 DNA Cycler (MJ Research, USA). The PCR ingredients were 1.25 U high fidelity ExTaq polymerase (Takara, China), 0.2 mM of each dNTP and $1 \mu \mathrm{M}$ of each primer, and 200-300 ng template DNA. The PCR parameters were $94^{\circ} \mathrm{C}$ for 4 min to denature the template DNA, followed by 35 cycles at $94^{\circ} \mathrm{C}$ for $1 \mathrm{~min}, 58^{\circ} \mathrm{C}$ for 1 min , and $72^{\circ} \mathrm{C}$ for 2 min , then a final extension at $72^{\circ} \mathrm{C}$ for 5 min . The PCR products were separated in 0.8% agrose gels and the

Table 1 PCR primers used for cloning LMW glutenin genes from Taeniatherum spp. Stop codons are shown by asterisks (*)

Primer name	Primer sequence	Amino acid sequence
Forward		
PF1	5^{\prime}-atg, aag, acc, ttc, ctc, att, tgt, g-3'	MKTFLIC
PF2	5^{\prime}-atg, aag, acc, ttc, ctc, atc/a, ttc/t, g-3'	MKTFLIF
PF3	5^{\prime}-atg, aag, acc/a, ttc, ctc/t, gtc, ttt, g-3'	MKTFLVF
PF4	$5^{\prime}-\mathrm{atg}$, aaa, acc, ttc, ctc, gtc, tgt, g-3'	MKTFLVC
PF5	$5^{\prime}-\mathrm{atg}$, agg, acc, ttc, ctt, gtc, ttt, g-3'	MRTFLVF
PF6	5^{\prime}-atg, aag, acc, ttc, ccc, gtc, ttt, g-3'	MKTFPVF
RF7	5^{\prime}-atg, aag, aaa, aac, ctc, gtc, ttt, g-3'	MKKNLVF
Reverse		
PR1	5^{\prime}-tta, tca, gta, ggc, acc, aac, $\mathrm{t}-3^{\prime}$	RVGAY**; QVGAY**; GVGAY**
PR2	5^{\prime}-tta, tca, gta, gac, acc, c/aac, tc- 3^{\prime}	GVGVY**
PR3	5^{\prime}-tta, ggc, acc, aac, tcc, ggt, gc-3'	TGVGA*
PR4	5^{\prime}-tta, tca, gta, gca, cca, ctc, cg-3'	PEWCY**
PR5	5^{\prime}-tta, $\mathrm{tt} / \mathrm{ca}, \mathrm{gta}, \mathrm{gcc}, \mathrm{acc}, \mathrm{aac}, \mathrm{tc}-3^{\prime}$	GVGGY**
PR6	5^{\prime}-tta, tca, gta, ggc, act, aac, tc-3'	GVSAY**
PR7	5^{\prime}-tta, tca, gta, ggc, agc, aac, tc- 3^{\prime}	GVAAY**
PR8	5^{\prime}-tta, tca, gta, ggg, gcc, aac, tc-3'	GVGPY**
PR9	5^{\prime}-tta, tta, gta, gga, acc, aac, tc- 3^{\prime}	GVGSY**

targeted DNA fragments were recovered and ligated into pMD18-T vectors (Takara, China).

The ligated products were transformed into E. coli DH10B cells and positive clones were selected. At least one DNA fragment derived by each primer pair was used for cloning and sequencing. Three clones for each candidate DNA fragment were sequenced. The sequnence was determined by sequnecing of three clones at two directions.

Sequence alignment and phylogenetic analysis

Sequence alignments were conducted by Clustal W (Thompson et al. 1994). The deduced amino acid sequences of 45 genes from Taeniatherum and 26 homologous genes from four diploid species of wheat relatives, including eight from Ae. tauschii (Johal et al. 2004; Pei et al. 2007; Huang and Cloutier 2008), nine from Ae. longissima (Jiang et al. 2008), and nine from T. monococcum and T. urartu (An et al. 2006), were used to construct a topology tree to elucidate the evolutionary relationships among them. The phylogenetic tree was established using the deduced protein sequences by MEGA 4.0 (Tamura et al. 2007). For the analysis, the Neighbor-Joining (NJ) method and the
complete deletion option were used with respect to gaps in the aligned sequences. Bootstrap values were estimated based on 1,000 replications. At the same time, evolutionary distances were measured by calculating p-distances for each pair of aligned sequences.

Results

LMW glutenin genes in GenBank

At January 24, 2009, 264 LMW glutenin gene sequences (including complete genes, partial genes and pseudogenes) were in the GenBank database. The sequences were derived from species of five Triticeae genera, including Triticum (168 sequences), Aegilops (42), Lophopyrum (25), Secale (3), and Hordeum (26) (Supplementary Table 1).

According to the seven amino acid residues at the beginning of the signal peptides and the ends of the C-terminals, these genes were divided into 15 and 17 groups, respectively (Table 2). Among them, the signal peptides MKTFLVF and MKTFLIF and the C-terminal GVGAY** and RVGAY** were predominant types, accounting for 45.70% (117/256), 33.6%

Table 2 Signal peptide and C -terminal sequences in 264 LMW glutenin genes from wheat and its relative species

Some partial sequences lacking signal peptide, N -terminal or C -terminal sequences were included among the 264 sequences. The underlined sequences were used for primer design. Asterisks (*) indicate stop codons

	Signal peptide	No. of sequences	C-terminal	No. of sequences
1	MKTFLVF	117	GVGAY**	126
2	MKTFLIF	86	RVGAY**	30
3	MKTLLIL	12	GVGGY**	16
4	MKTLLIF	11	GVSAY**	14
5	MKNFLVF	6	GVGVY**	13
6	MKTFLIC	6	QVGAY**	13
7	MKTFLVC	5	GVGPY**	8
8	MKTLFIL	4	GVGSY**	6
9	MKTFVVF	2	PPDFWH*	6
10	MKTVLVC	2	PVDFWH*	2
11	MKKNLVF	1	TRVGV**	2
12	MKTFLTF	1	GFGAY**	1
13	MKTFPVF	1	GVAAY**	1
14	MKTLLVF	1	PEWCY**	1
15	MRTFLVF	1	PSVGV**	1
16			TGVGA*	1
17			TVGAYL*	1
Total		256		242

(86/256), 52.1% ($126 / 242$) and 12.4% (30/242) of the total sequences, respectively.

LMW glutenin sequences from Taeniatherum spp.

In a total of 504 PCR reactions, 136 produced candidate LMW glutenin fragments of 0.9 to 1.1 Kb (Supplementary Table 2). Among 63 primer combinations, 34 gave positive amplifications in the eight accessions of Taeniatherum. Twenty eight, 26, 8, 20, $18,16,15$, and 5 of these primer combinations produced candidate LMW glutenins in PI 561094, PI220590, PI204577, PI598389, PI577710, PI577708, PI561092, and PI561091, respectively. We chose 45 DNA fragments (including all DNA fragments from PI 561094 and PI 561091 and 1, 2, 1 and 1 from PI 220590, PI 598389, PI 577710 and PI 577708, respectively) for further use in cloning and sequencing (Table 3, Supplementary Table 2).

Forty-five different LMW glutenin genes, designated $T a-1$ to Ta-45 (GenBank accessions FJ481524 to FJ481568), were obtained (Table 3). Thirty-three genes encoded complete mature proteins with intact open reading frames (ORFs). The remaining 12 were pseudogenes with incomplete ORFs, caused by in-frame stop codons or frame-shift mutations.

Characterization of LMW glutenin genes from Taeniatherum spp.

The sequences of the 45 LMW glutenin genes ranged from 909 to $1,059 \mathrm{bp}$ at the nucleotide level and from 301 to 351 amino acids (Table 3; Fig. 1, Supplementary Fig. 1). Gene length differences were caused by INDELs in the glutamine rich repetitive domains. However, the genes shared a similar primary structure with those of homologous genes in wheat and other relatives in four structural regions: viz. a signal peptide region with 20 residues, a N-terminal region with 13 residues, a repetitive domain rich in glutamine and proline residues and characterized by tandem repeat units, and a C-terminal domain consisting of three subregions that are cysteine rich (I), glutamine rich (II), and a final conserved domain (III). Five signal peptide types occurred among the 45 genes, such as MKKNLVF (4 genes), MKTFLIF (11), MKTFLVF (11), MKTFPVF (8), and MRTFLVF (11). Five different N -terminal sequences were also identified, including METGRIP (1 gene), VETSCIP (1), METGSIP (1), METSRVP (14), and METSCIP (28). In addition, there were 9 C-terminal peptides, viz. GTGVGA* (5 genes), GVAAY** (8), GVGAY** (7), GVGGY** (3), GVGPY** (3), GVGSY** (2), GVGVY** (5), GVSAY** (7), and PEWCY** (5).
Table 3 Characteristics of 45 LMW glutenin genes of Taeniatherum

Sequence	NCBI accession	Primer combination	Source	DNA length (bp)	Signal peptide	N -terminal	C-terminal	Protein similarity sequence
Ta-1p	FJ481524	$\mathrm{PF} 2+\mathrm{PR} 7$	T. asperum PI 561091	1,044	MKTFLIF	METGRIP	GVAAY**	81\% CAA74550 T. durum
Ta-2p	FJ481525	$\mathrm{PF} 3+\mathrm{RR} 3$	T. asperum PI 561091	909	MKTFLVF	METSCIP	GTGVGA*	80\% BAB78760 T. aestivum
Ta-3	FJ481526	PF6 + PR1	T. asperum PI 561091	915	MKTFPVF	METSCIP	GVGAY**	80\% BAB78760 T. aestivum
Ta-4	FJ481527	PF6 + PR7	T. asperum PI 561091	915	MKTFPVF	METSCIP	GVAAY**	79\% BAB78760 T. aestivum
Ta-5	FJ481528	PF7 + PR7	T. asperum PI 561091	915	MKKNLVF	METSCIP	GVAAY**	82\% ABM66823 Ae. geniculata
Ta-6p	FJ481529	$\mathrm{PF} 3+\mathrm{PR} 4$	T. crinitum PI 220590	1,033	MKTFLVF	METSRVP	PEWCY**@	61\% ABM66823 Ae. geniculata
Ta-7	FJ481530	PF6 + PR2	T. crinitum PI 220590	1035	MKTFPVF	METSRVP	GVGVY**	60\% ABM66823 Ae. geniculata
Ta-8p	FJ481531	$\mathrm{PF} 2+\mathrm{PR} 4$	T. caput-medusae PI 598389	1,045	MKTFLIF	METSRVP	PEWCY**@	79\% CAA74550 T. durum
Ta-9p	FJ481532	$\mathrm{PF} 7+\mathrm{PR} 1$	T. caput-medusae PI 577710	915	MKKNLVF	METSCIP	GVGAY**	77\% BAB78760 T. aestivum
Ta-10	FJ481533	$\mathrm{PF} 2+\mathrm{PR} 7$	T. caput-medusae PI 577708	1,050	MKTFLIF	METSRVP	GVAAY**	80\% CAA74550 T. durum
Ta-11	FJ481534	$\mathrm{PF} 3+\mathrm{PR} 7$	T. caput-medusae PI 577708	1,050	MKTFLVF	METSRVP	GVAAY**	80\% CAA74550 T. durum
Ta-12p	FJ481535	PF5 + PR4	T. caput-medusae PI 577708	1,048	MRTFLVF	METSRVP	PEWCY**@	80\% CAA74550 T. durum
Ta-13	FJ481536	PF5 + PR6	T. caput-medusae PI 577708	1,050	MRTFLVF	METSRVP	GVSAY**	80\% CAA74550 T. durum
Ta-14p	FJ481537	PF6 + PR4	T. caput-medusae PI 577708	1,048	MKTFPVF	METSRVP	PEWCY**@	80\% CAA74550 T. durum
Ta-15p	FJ481538	$\mathrm{PF} 2+\mathrm{PR} 1$	T. crinitum PI 561094	915	MKTFLIF	METGSIP	GVGAY**	68\% BAB78760 T. aestivum
Ta-16	FJ481539	$\mathrm{PF} 2+\mathrm{PR} 2$	T. crinitum PI 561094	1,059	MKTFLIF	METSRVP	GVGVY**	80\% CAA74550 T. durum
Ta-17	FJ481540	$\mathrm{PF} 2+\mathrm{PR} 3$	T. crinitum PI 561094	909	MKTFLIF	METSCIP	GTGVGA*	80\% BAB78760 T. aestivum
Ta-18	FJ481541	$\mathrm{PF} 2+\mathrm{PR} 5$	T. crinitum PI 561094	1,059	MKTFLIF	METSRVP	GVGGY**	80\% CAA74550 T. durum
Ta-19	FJ481542	$\mathrm{PF} 2+\mathrm{PR} 6$	T. crinitum PI 561094	915	MKTFLIF	METSCIP	GVSAY**	79\% BAB78760 T. aestivum
Ta-20	FJ481543	$\mathrm{PF} 2+\mathrm{PR} 6$	T. crinitum PI 561094	1,059	MKTFLIF	METSRVP	GVSAY**	78\% CAA74550 T. durum
Ta-21	FJ481544	$\mathrm{PF} 2+\mathrm{PR} 7$	T. crinitum PI 561094	915	MKTFLIF	METSCIP	GVAAY**	79\% BAB78760 T. aestivum
Ta-22	FJ481545	$\mathrm{PF} 2+\mathrm{PR} 8$	T. crinitum PI 561094	915	MKTFLIF	METSCIP	GVGPY**	78\% BAB78760 T. aestivum
Ta-23p	FJ481546	$\mathrm{PF} 3+\mathrm{PR} 1$	T. crinitum PI 561094	1,059	MKTFLVF	METSRVP	GVGAY**	81\% CAA74550 T. durum
Ta-24	FJ481547	$\mathrm{PF} 3+\mathrm{PR} 2$	T. crinitum PI 561094	915	MKTFLVF	METSCIP	GVGVY**	80\% BAB78760 T. aestivum
Ta-25	FJ481548	$\mathrm{PF} 3+\mathrm{PR} 2$	T. crinitum PI 561094	1,059	MKTFLVF	METSRVP	GVGVY**	80\% CAA74550 T. durum
Ta-26	FJ481549	$\mathrm{PF} 3+\mathrm{PR} 3$	T. crinitum PI 561094	909	MKTFLVF	VETSCIP	GTGVGA*	80\% BAB78760 T. aestivum
Ta-27	FJ481550	PF3 + PR6	T. crinitum PI 561094	915	MKTFLVF	METSCIP	GVSAY**	82\% ABM66823 Ae. geniculata
Ta-28	FJ481551	PF3 + PR7	T. crinitum PI 561094	915	MKTFLVF	METSCIP	GVAAY**	80\% BAB78760 T. aestivum
Ta-29	FJ481552	PF3 + PR8	T. crinitum PI 561094	915	MKTFLVF	METSCIP	GVGPY**	79\% BAB78760 T. aestivum
Ta-30	FJ481553	$\mathrm{PF} 3+\mathrm{PR} 9$	T. crinitum PI 561094	915	MKTFLVF	METSCIP	GVGSY**	82\% ABM66823 Ae. geniculata
Ta-31	FJ481554	PF5 + PR1	T. crinitum PI 561094	915	MRTFLVF	METSCIP	GVGAY**	79\% BAB78760 T. aestivum
Ta-32	FJ481555	PF5 + PR2	T. crinitum PI 561094	915	MRTFLVF	METSCIP	GVGVY**	79\% BAB78760 T. aestivum
Ta-33	FJ481556	PF5 + PR3	T. crinitum PI 561094	909	MRTFLVF	METSCIP	GTGVGA*	82\% ABM66823 Ae. geniculata
Ta-34p	FJ481557	PF5 + PR4	T. crinitum PI 561094	913	MRTFLVF	METSCIP	PEWCY**@	82\% ABM66823 Ae. geniculata

Table 3 continued

Sequence	NCBI accession	Primer combination	Source	DNA length (bp)	Signal peptide	N -terminal	C-terminal	Protein similarity sequence
Ta-35p	FJ481558	PF5 + PR5	T. crinitum PI 561094	915	MRTFLVF	METSCIP	GVGGY**	82\% ABM66823 Ae. geniculata
Ta-36	FJ481559	PF5 + PR5	T. crinitum PI 561094	1,059	MRTFLVF	METSRVP	GVGGY**	80\% CAA74550 T. durum
Ta-37	FJ481560	PF5 + PR6	T. crinitum PI 561094	915	MRTFLVF	METSCIP	GVSAY**	82\% ABM66823 Ae. geniculata
Ta-38	FJ481561	PF5 + PR7	T. crinitum PI 561094	915	MRTFLVF	METSCIP	GVAAY**	78\% BAB78760 T. aestivum
Ta-39p	FJ481562	PF5 + PR8	T. crinitum PI 561094	915	MRTFLVF	METSCIP	GVGPY**	82\% ABM66823 Ae. geniculata
Ta-40	FJ481563	PF6 + PR1	T. crinitum PI 561094	915	MKTFPVF	METSCIP	GVGAY**	82\% ABM66823 Ae. geniculata
Ta-41	FJ481564	PF6 + PR3	T. crinitum PI 561094	909	MKTFPVF	METSCIP	GTGVGA*	82\% ABM66823 Ae. geniculata
Ta-42	FJ481565	PF6 + PR6	T. crinitum PI 561094	915	MKTFPVF	METSCIP	GVSAY**	82\% ABM66823 Ae. geniculata
Ta-43	FJ481566	PF6 + PR9	T. crinitum PI 561094	915	MKTFPVF	METSCIP	GVGSY**	82\% ABM66823 Ae. geniculata
Ta-44	FJ481567	PF7 + PR1	T. crinitum PI 561094	915	MKKNLVF	METSCIP	GVGAY**	82\% ABM66823 Ae. geniculata
Ta-45	FJ481568	PF7 + PR6	T. crinitum PI 561094	915	MKKNLVF	METSCIP	GVSAY**	82\% ABM66823 Ae. geniculata

 binding site. The protein sequences CAA74550, BAB78670 and ABM66823 were reported by D'Ovidio et al. (1997); Ikeda et al. (2002), and unpublished data, respectively

The 45 genes shared $77.2-99.7 \%$ identities in peptide sequences among each other (data not shown) and $60.0-82.0 \%$ identities with those in wheat and other relatives. Thirteen genes (Ta-1, 8, 10, 11, 12, $13,14,16,18,20,23,25$ and 36) showed a high similarity of 78.0 to 81.0% to CAA74550 (D'Ovidio et al. 1997), a durum wheat Glu-B3 encoded LMW glutenin. Sixteen genes (Ta-2, 3, 4, 9, 15, 17, 19, 21, $22,24,26,28,29,31,32$ and 38) showed a high similarity of 68.0 to 80.0% to BAB78760, a common wheat (T. aestivum) Glu-D3 encoded LMW glutenin (Ikeda et al. 2002; D'Ovidio and Masci 2004). The remaining 16 genes (Ta-5, 6, 7, 27, 30, 33, 34, 35, 37, $39,40,41,42,43,44$ and 45) showed a high similarity of 60.0 to 82.0% to an Ae. geniculata LMW glutenin ABM66823 (unpublished data).

Forty-four genes started with methionine in the N terminal and were therefore LMW-m types. Among them, $T a-1$ and $T a-15$ had unique N-terminal sequences of METGRIP and METGSIP, respectively. However, gene Ta-26 started with valine (Val) at the N -terminal and had a unique N -terminal sequence of VETSCIP. These three N -terminal structures were not reported previously in Triticeae species. The genes with N-terminal METSRVP or METGSIP were longer at the amino acid level than those with M(V)ETSCIP or METGRIP.

Genes Ta-18 and Ta-36 should produce the same mature proteins after signal peptide removal (Supplementary Fig. 2a). However, their signal peptide regions differed by four single base mutations. Similarly, there were three, three, and four single base differences between Ta-24 and Ta-32 (Supplementary Fig. 2b), Ta-17 and Ta-41 (Supplementary Fig. 2c), and among Ta-4, Ta-21 and Ta-28 (Supplementary Fig. 2d), respectively.

Twelve pseudogenes (Fig. 1) were caused by inframe stop codons (Fig. 1a) or frame-shift mutations (Fig. 1b). The single base transition of C / T in CAA or CAG (glutamine, Gln) in Ta-1, 9, 23, 39 and 40 led to in-frame stop codons TAA or TAG at amino acid residues $56,75,129,53$ and 102 , respectively, in the repetitive domain (Fig. 1a). The pseudogene Ta-15 was caused by an in-frame stop codon, a single base transverse T/G in TTA at amino acid residue 44. The single base transverse of A/T in AAG (lysine, Lys) in $T a-2$ led to the in-frame stop codon TAG at residue 243 in the glutamine-rich domain (Fig. 1a). Five genes (Ta-6, 8, 12, 14 and 34) had frame-shift
mutations within their ORFs (Fig. 1b) because of single base G or A insertions upstream the binding site of primer PR4 (Fig. 1c).

Phylogenetic analysis of LMW glutenin genes from Taeniatherum spp

LMW glutenin genes from Taeniatherum spp. and four diploid relative species of wheat formed two separating branches (Fig. 2). The genes from the A genome
aggregated in one branch, whereas the remaining genes formed a parallel branch. Taeniatherum genes were dispersed in the two subclades and all the Taeniatherum LMW genes except Ta-15 aggregated in the branch formed by four genes from Ae. tauschii and three genes from Ae. longissima. However, Ta-15 clustered with one Ae. tauschii gene and six genes from Ae. longissima. The results suggested that the LMW glutenin genes from Taeniatherum were more similar to those in the B and D genome diploids than the A genome diploids.

Fig. 1 Pseudogenes were caused by in-frame stop codons (a) and frame shift mutations (b) by single base insertions at the DNA level (c). The mutation regions are boxed. The GenBank accession number for AeL6 was AY724436

Ta-23		
Ta-	MKTFLIFALLGVVATSAIAQMETGRIPDLDKPSQQQPLPPQQQPPCSQQEQPLPQ*QQ.. PIIILQQPPFSQQQQPVLPQQQQPVIIILQ	86
та	MKTFLVFALLAIVATSVIAQMETSCIPGLERPWQQQPLPPQQ . . TLFPQQQPFPQQQQ . . PPFSQQQPSFSQQQPPFSQQQ . . . PILPQ	
Ta-3	MRTFLVFALLAIVATSVIAQMETSCIPGLERPWQQQPLPPQQ . . TLFPQQQPFP*QQQ . . PPFSQQQPSFSQQQPPFSQQQ . . . PILPQ	1
Ta-40	MKTFPVFALLAIVATSVIAQMETSCIPGLERPWQQQPLPPQQ . . TLFPQQQPFPQQQQ . . PPFSQQQPSFSQQQPPFSQQQ . . . PILPQ	82
та	MKKNLVFALLAVVATSVIAQMETSCIPGLERPWQQQPLPPQQ . . TLFPQQQPFPQQQQ . . PPFSQQQPSFSQQQPPFS*QQ . . . PILPQ	
Ta-15	MKTFLIFALLAVAATSSIAQMETGSIPGSEKPSQQQQLPPRQ. . T*SHQQQQPIQQQPQPFPQQQQQQPCSQQQQRPFSQQKQ.PVLPQ	5
	\qquad	
	QPPFLEQQQPVLPQQPSFSQQQQ $\mathrm{QPPFLEQQQPVLPQQPSFSQQQQQQQ.PFPQQQQPSSQQRPFPQQHOHLLQQQIPVVQPSVL}$	
	QPPFSQQQQPALPQQSPFLQQQQ .	
	QPPFSQQQQPALPQQSPFLQQQQ .	130
	QPPFSQQQQPALPQQSPFL*QQQ .	
	QPPFSQQQQPALPQQSPFLQQQQ . LVLPPQQQHQQLLQQQIPIVQPSVL	
		126
	QQLHPCKVFLQQQCSHVAMSQRLARSQMWQQSSCHVMQQQCCQQLPQIPEQSRYEAIRAIVYSIILQEQQ . .QGFVQPQQQQPQQLGQG	8
	QQLNPCKVFLQQKCSPVAMPQRLARSQMWQQSSCHVMQQQCCQQLPQIPEQSRYEAIRAITYSIILQEQQ . . QGFVQPQQQQPQQSGQG	218
	QQLNPCKVFLQQKCSPVAMPQRLARSQMWQQSSCHVMQQQCCQQLPQIPEQSRYEAIRAITYSIILQEQQ . . CGFV CP PQQQQPQQSGQG	217
	QQLNPCKVFLQQKCSPVAMPQRLARSQMWQQSSCHVMQQQCCQQLPQIPEQSRYEAIRAITYSIILQEQQ . . QGFVQPQQQQPQQSGQG	
	QQLNPCKVFLQQQCSPVAMPQRLARSQMWQQSSCHVMQQQCCQQLPQIPEQSRYEAIRAITYSIILQEQQ. . QGFVQPQQQQPQQSGQ	7
	QHLNLYKVFLQQQCSLVEMPRSLARSQMLQQSSCHVMQQQCCQRLPLIPKQSRYEAIRAIIYSIVLQEQQKGQGFDQAQQQQPQQLGQG	5
	VSQPQQQSQQQQLGQCSFQQPQQQQLGQQPQQQQIPQGTFLQPHQISQLEVMTSIALRTLPTICGVVVPLYSSTTSVPFGIGTGVA	345
	VSQSQQQSQQ. LGQCSFQQ . PQQQLGQ*PQQQQVLQGTFLQPHQIAHLEVMTSIALRTLPTMCSVNVPLYSSTTSVPFSVGTGVGA	301
	VSQSQQSSQQ. LGQCSFQQ. PQQQLGQQPQQQQVLQGTFLQPHQIAHLEVMTFIALRTLPTMCSVNVPLYSSTTSVPFSVGTGVGPY	
	VSQSQQQSQQQ.LGQCSFQQ. PQQQLGQQPQQQQVLQGTFLQPHQIAHLEVMTSIALRTLPTMCSVNVPLYSSTTSVPFSVGTGVGAY	302
	Y	
	SQPQQQSQQQQLGQCSFQQPQQQQLGQQPQQQQIPQGTFLQPHQISQLEVMTSIALRTLPTICGGVVVPLYSSTTSVPFGIGTGVGAY	
тa-12	TFLVFALPAIAATSAIAQMETSRVPGLEKPWBQQP . . LPPPQQPPCSSQQ.QQPLPQQQQPIIILQQ.PPFSQQQQPVLPQQQQPVII	
Ta-14	MKTFPVFALLAIAATSAIAQMETSRVPGLEKPWQQQP. . LPPPQQPPCSSQQ.QQPLPQQQQPIIILQQ.PPFSQQQQPVLPQQQQPVII	
Ta-8	MKTFLIFALLAIAATSAIAQMETSRVPGLEKPWQQQP . .LPPPQQPPCSQQ. QQPLPQQQQPIIILQQ.PPFSQQQQPVLPQQQQPVII $^{\text {L }}$	
та-6	MKTFLVFALLALAATSAIAQMETSRVPGLEKPWQQQP . .LQPQQQPPCSQQ. Q QPLPQQQQPIIILQQ.PPFSQQQQPVLPQQQQPVII	
Ta-		
AeL6	MKTFLICALLAIAATSAVAQLPISQQQ. . QPPFSQRPQISQRQQQPPLSQQEQQPFSQQQQPPFSQQQQPPFSQQQQSPFSQQPQ.ISQ	
	itive domain	
	LQQPPFLEQQQPVLPQQPSFSQQQQQQQQPFLEQQQPVLPQQPSFSQQQQQQQ PFPQQQQPSSQQQPFPQQHQHPLQQQIPVVQPSVLQ	
	LQQPPFLEQQQPVLPQQPSFSQQQQQQQQPFLEQQQPVLPQQPSFSQQQQQQQPFPQQQQPSSQQQPFPQQHQHPLQQQIPVVQPSVLQ	
	LQQPPFLEQQQPVLPQQPSFSQQQQQQQQPFLEQQQPVLPQQPSFSQQQQQQ. PFPQQQQPSSQQQPFPQQHQHPLQQQIPVVQPSVLQ	
	LQQPPFLEQQQPVLPQQPSFSQQQQQQQPPFLEQQQPVLPQQPSFSQQ PFPQQQQPSSQQQPFPQQHQHLLQQQIPVVQPSVL	
	PQQPPFSQQQQPALPQQS PFLQQQQLVLPPQ . QQ $^{\text {CRQQLLQRQIPIVQPSVL }}$	
	QQQPPFSQQQQPPCSQQQ. .QPPFSQQQPPFSQQQQPQISQQPQISQQ QPPPFSSQQQQIPVIHPYVL $^{\text {a }}$	2
	\longrightarrow c-terminal domain (I) \longleftrightarrow	
	QLHPCKVFLQQQCSHVAMSQRLARSQMWQQSSCHVMQQQCCQQLPQIPEQSRYEAIRAIVYSIILQEQQQG . . FVQPQQQQPPQQLGQGV	
	QLHPCKVFLQQQCSHVAMSQRLARSQMWQQSSCHVMQQQCCQQLPQIPEQSRYEAIRAIVYSIILQEQQQG . . FVQPQQQQPQQLGQGV	
	QLHPCKVFLQQQCSSHVMMSQRLARSQMWQQSSCHVMQQQCCQQLPQIPEQSRYEAIRAIVYSIILQEQQQG . . FVQPQQQQPQQLGQGV	
	QLHPCKVFLQQQCSHVAMSQRLARSQMWQQSSCHVMQQQCCQQLPQIPEQSRYEAIRAIVYSIILQEQQQG . . FVQPQQQQPQQLGQGV	256
	QLNPCKVFLQQRCSPVAMPQRLARSQMWQQSSCHVMQQQCCQQLPQIPEQSRYEAIRAITYSIILQEQQQG . . FVQPQQQQPQQSGQGV	
	QLNPCKVFLQQQCSPVAMQRGLARSQMLQQGSCHVLQQQCCQQLPQIPEQFRHETIRAIVYSIIPQEQQQGQGFIQPQQQQPQQSAQRV	
	SQPQQQSQQQQLGQCSFQQPQQQQLGQQPQQQe. IPQGTFLQPHOISQLEVMTSIALRTLPTICGVNVPLYSSTTSVPF FIGTGVVLLI	349
	SQPQQQSQQQQLGQCSFQQPQQQQLGQQPQQQQ.IPQGTFLQPHQISQLEVTTSIALRTLPTICGGVNVLYSSTTSVPFFIGTGVVLLI	8
		4
	SQSQQQSQQQ.LGQCSFQQPQQQ.LGQQPQQQQ.VLQGTFLQPHQIAHLEVMTSIALRTLPTMCSVNVPLYSSTTSVPF ${ }^{\text {VVGTGVVLLI }}$	4
	SQPQQQSQQQ.LGQQ.... PQQQQLGQQPQQQQQVLQGTFLQPHEIAQLEAMTSIALRTLPRMCSVVVPLYGTASSVSFVLAPEWCY*	
	G I G T G V V L L I	
Ta-12	964 CGATATGCGGTGTCAATGTGCCGTTGTACAGCTCCACCACTAGTGTGCCATTCGECATTGGAACCGGAGTGGTGCTACTGATAA	1048
Ta-	964 CGATATGCGGTGTCAATGTGCCGTTGTACAGCTCCACCACTAGTGTGCCATTCGECATTGGAACCGGAGTGGTGCTACTGATA	1048
та-8	961 CGATATGCGGTGTCAATGTGCCGTTGTACAGCTCCACCACTAGTGTGCCATTCGECATTGGAACCGGAGTGGTGCTACTGATA	5
тa-6	949 CGATATGCGGTGTCAATGTGCCGTTGTACAGCTCCACCACTAGTGTGCCATTCGECATTGGAACCGGAGTGGTGCTACTGATAA	1033
та-34	829 CGATGTGCAGCGTCAATGTGCCGTTGTACAGCTCCACCACTAGTGTGCCATTCAGCGTTGGCACCGGAGTGGTGCTACTGATAA	913
AeL6	891 GGATGTGCAGTGTCAATGTGCCGTTGTACGGCACCGCCAGTAGTGTGTCATTC GTGTTGGCACCGGAGTGGTGCTACTGATAA	975
	L A P E W C Y *	

Fig. 2 Phylogenetic analysis of LMW glutenin genes of Taeniatherum spp. with those of orthologous genes from the three diploid donor species of bread wheat

Discussion

PCR primer design is critical for cloning homologous genes by PCR. Because researchers often select one or a few genes as reference sequences for PCR primer design, only one or a few genes in alien species may
be obtained from such a strategy (D'Ovidio et al. 1997; An et al. 2006; Pei et al. 2007). In the present study, seven forward and nine reverse primers representing 63 primer combinations, were designed from conserved sequences in signal peptides or the C-terminals of 264 genes previously reported in wheat
and its wild relatives. Using these primer combinations, we produced 136 candidate LMW glutenin gene fragments in a total of 504 PCR reactions in eight accessions of Taeniatherum, resulting in positive PCR amplifications of $\sim 27 \%$ of them. Of all the primer combinations, 34 produced candidate LMW glutenin DNA fragments, resulting in positive PCR amplifications of $\sim 54 \%$. After sequencing the DNA fragments produced by selected primer combinations (Table 3), we obtained 45 genes from Taeniatherum. Theoretically, these primer combinations should be capable of isolating LMW glutenin genes from other Triticeae cereals. Because not all conserved sequences in signal peptides, or the C-terminals of 264 genes, were used for primer design in the present study, more PCR primers should be designed and used for isolating LMW glutenin genes from Taeniatherum spp. as well as other species.

LMW glutenins belong to multigene families and gene numbers were estimated at $35-40$ in bread wheat (Harberd et al. 1985; Sabelli and Shewry 1991; Cassidy et al. 1998). Variation in N -terminal, C-terminal and other regions can result in gene alteration. Based on the first amino acid residue in the N -terminal, the LMW glutenin genes are classified as LMW-m, LMW-i and LMW-s types (Cloutier et al. 2001; Lew et al. 1992). Forty four of 45 genes from Taeniatherum spp. were LMW-m since the first amino acid residue was methionine. However, Ta-26 had a unique N -terminal with the first amino acid residue being valine (Val), probably resulting from a single base mutation from ATG (Met) to GTG (Val). The LMW-m genes can be further divided into METSRVP-, MDTSCIPG-, METSCIP-, MENSHIP-, METSHIPS, METSHIPG-, METRCIP-, and MET-SCIS- types according to the second or following residues in the N -terminal, and the genes involved were located to specific loci in hexaploid and/or tetraploid wheat (Van Campenhout et al. 1995; D' Ovidio et al. 1997; Zhang et al. 2004; Huang and Cloutier 2008). For example, the genes with N-terminals METSCIP- and METSRVP- were specific for the wheat Glu-D3 locus (Ikeda et al. 2002; Zhao et al. 2007; Huang and Cloutier 2008). Although Taeniatherum is not closely related to wheat (Frederiksen 1986; Frederiksen and Bothmer 1986), 28 and 14 of the 45 LMW glutenin genes shared the same N-terminal METSCIP- and METSRVP- as in wheat. The C-terminal regions of LMW glutenins
were also variable. Based on sequence differences in the C and N -terminal domains, LMW glutenin genes from the bread wheat variety Norin 61 were classified into six types and 12 groups (Ikeda et al. 2002). The 45 LMW glutenin genes from Taeniatherum possessed 9 different C-terminal peptides, GTGVGA*, GVAAY**, GVGAY**, GVGGY**, GVGPY**, GVGSY**, GVGVY**, GVSAY**, and PEWCY**. The alignment of nucleotide sequences suggested that the variations in N and C terminals were most probably caused by one or more single base mutations. The lengths of LMW glutenin genes are not uniform. Normally, they vary from 909 to $1,167 \mathrm{bp}$ in length and range from $\sim 32,000$ to $\sim 42,800 \mathrm{Da}$ in encoded mature protein (D'Ovidio and Masci 2004). Deletion and/or insertion of repeat units in the repetitive domain are largely responsible for the length variation (D'Ovidio et al. 1999). Unequal crossing-over and/or slippage during replication can result in deletion and/or insertion of repeat units in the repetitive domain and has been suggested as one of the mechanisms for wheat prolamin evolution (Shewry et al. 1989). Allelic gene sequence comparisons suggest that deletion and/or insertion of repeat units in the repetitive domains are also responsible for new LMW glutenin genes (D'Ovidio et al. 1999). The DNA lengths of the 45 LMW glutenin genes from Taeniatherum spp. were likewise not the same, 30 genes with N-terminals METSCIPG, VETSCIPG and METGSIPG ranged from 909 to 915 bp , whereas the remaining 12 genes with N-terminals METSRVP and METGRIP ranged from 1,033 to $1,059 \mathrm{bp}$.

A large number of pseudogenes have been reported in cereals, including pseudogenes for high molecular weight glutenins (Forde et al. 1985), γ-gliadins (Anderson and Greene 1997) and LMW glutenins (Johal et al. 2004). Two types of LMW glutenin pseudogenes were observed in this study. Cereal prolamins are characterized by an abundance of glutamine residues. Consequently, single base transition mutations C / T at the first nucleotide position in glutamine codons (CAA or CAG) in these genes result in a high frequency of stop codons (TAA and TAG). Seven pseudogenes were attributed to in-frame stop codons (TAA or TAG) in the repetitive domain (Ta-23, 1, 39, 40, 9 and 15) or in the glutamine-rich C-terminal (Ta-2). The insertion or deletion of a single base will also result in a frame shift mutation in the triplet sets for the entire
subsequent sequence. The function of the new protein is likely to be lost because the entire protein sequence is altered and different from the original one beyond the site of mutation. Single base G (Ta-12, 14, 8 and 6) or A (Ta-34) insertions may result in frame shift mutations and function losses of the putative LMW glutenin pseudogenes in Taeniatherum.

It was suggested that the prolamine storage protein genes in the tribe of Triticeae have a common evolutionary origin (Shewry and Tatham 1990) and the abundant variations in LMW glutenin genes in wheat relatives represent potentially new genes for wheat enduse quality improvement (D' Ovidio and Masci 2004). Based on phylogenetic analyses and sequence alignments, the genes from Taeniatherum were more similar to those at the Glu-B3 and Glu-D3 loci rather than at Glu-A3 (Fig. 2), suggesting that LMW glutenin gene duplication in Taeniatherum probably occurred after separation of the Ta, B and D genomes.

Acknowledgments This work was partially funded by the Natural National Science Foundation of China (grant no. 30671272), China New Century Excellent Talents in Universities (06-0819), the Foundation for Author of National Excellent Doctoral Dissertation of China (200458), Sichuan Youth Science and Technology Foundation (09ZQ026-088), and Education Department of Sichuan Province (09ZA077 and 09ZZ024). We thank Professor Robert A. McIntosh, University of Sydney for critical review of this manuscript.

References

An X, Zhang Q, Yan Y, Li Q, Zhang Y, Wang A, Pei Y, Tian J, Wang H, Hsam SLK, Zeller FJ (2006) Cloning and molecular characterization of three novel LMW-i glutenin subunit genes from cultivated einkorn (Triticum monococcum L.). Theor Appl Genet 113:383-395
Anderson OD, Greene FC (1997) The α-gliadin gene family. II. DNA and protein sequence variation, subfamily structure, and origins of pseudogenes. Theor Appl Genet 95:59-65
Cassidy BG, Dvorak J, Anderson OD (1998) The wheat low-molecular-weight glutenin genes: characterization of six new genes and progress in understanding gene family structure. Theor Appl Genet 96:743-750
Cloutier S, Rampitsch C, Penner GA, Lukow OM (2001) Cloning and expression of a LMW-i glutenin gene. J Cereal Sci 33:143-154
D'Ovidio R, Masci S (2004) Review: the low-molecularweight glutenin subunits of wheat gluten. J Cereal Sci 39:321-339
D’Ovidio R, Simeone M, Masci S, Porceddu E (1997) Molecular characterization of a LMW-GS gene located on
chromosome 1B and the development of primers specific for the Glu-B3 complex locus in durum wheat. Theor Appl Genet 95:1119-1126
D’Ovidio R, Marchitelli C, Ercoli Cardelli L, Porceddu E (1999) Sequence similarity between allelic Glu-B3 genes related to quality properties of durum wheat. Theor Appl Genet 98:455-461
Forde J, Malpica JM, Halford NG, Shewry PR, Anderson OD, Greene FC, Miflin BJ (1985) The nucleotide sequence of a HMW glutenin subunit gene located on chromosome 1A of wheat (Triticum aestivum L.). Nucleic Acids Res 13:6817-6832
Frederiksen S (1986) Revision of Taeniatherum (Poaceae). Nord J Bot 6:389-397
Frederiksen S, Bothmer RV (1986) Relationships in Taeniatherum (Poaceae). Can J Bot 64:2343-2347
Guo ZF, Dong P, Long XY, Wei YM, Zhang LJ, Zheng YL (2008) Molecular characterization of LMW prolamines from Crithopsis delileana and the comparative analysis with those from Triticeae. Hereditas 145:204-211
Gupta RB, Shepherd KW (1990) Two-step one-dimensional SDS-PAGE analysis of LMW subunits of glutelin.1. Variation and genetic control of the subunits in hexaploid wheats. Theor Appl Genet 80:65-74
Harberd NP, Bartels D, Thompson RD (1985) Analysis of the gliadin multigene loci in bread wheat using nullisomictetrasomic lines. Mol Gen Genet 198:234-242
Hou YC, Liu Q, Long H, Wei YM, Zheng YL (2006) Characterization of low molecular-weight glutenin subunit genes from Hordeum brevisubulatum ssp. turkestanicum. Biol Bull 33:35-42
Huang XQ, Cloutier S (2008) Molecular characterization and genomic organization of low molecular weight glutenin subunit genes at the Glu-3 loci in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 116:953-966
Ikeda TM, Nagamine T, Fukuoka H, Yano H (2002) Identification of new low-molecular-weight glutenin subunit genes in wheat. Theor Appl Genet 104:680-687
Jiang CX, Pei YH, Zhang YZ, Li XH, Yao DN, Yan YM, Ma WJ, Hsam SLK, Zeller FJ (2008) Molecular cloning and characterization of four novel LMW glutenin subunit genes from Aegilops longissima, Triticum dicoccoides and T. zhukovskyi. Hereditas 145:92-98

Johal J, Gianibelli MC, Rahman S, Morell MK, Gale KR (2004) Characterization of low molecular weight glutenin genes in Aegilops tauschii. Theor Appl Genet 109:10281040
Lew EJL, Kuzmicky DD, Kasarda DD (1992) Characterization of low molecular weight glutenin subunits by reversephase high-performance liquid chromatography, sodium dodecyl sulfate-polyacrylamide gel electrophoresis and N terminal amino acid sequencing. Cereal Chem 69: 508-515
Li XH, Ma WJ, Gao LY, Zhang YZ, Wang AL, Ji KM, Wang K, Appels R, Yan YM (2008) A novel chimeric low-molecular-weight glutenin subunit gene from the wild relatives of wheat Aegilops kotschyi and Ae. juvenalis: evolution at the Glu-3 loci. Genetics 180:93-101
Luo Z, Chen FG, Feng DS, Xia GM (2005) LMW glutenin genes in Agropyron elongatum and their potential value in wheat breeding. Theor Appl Genet 111:272-280

Masci S, Lafiandra D, Porceddu E, Lew EJL, Tao HP, Kasarda DD (1993) D-glutenin subunits: N-terminal sequences and evidence for the presence of cysteine. Cereal Chem 70:581-585
Payne PI, Nightingale MA, Krattiger AF, Holt LM (1987) The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varieties. J Sci Food Agr 40:51-65
Pei YH, Wang AL, An XL, Li XH, Zhang YZ, Huang XQ, Yan YM (2007) Characterization and comparative analysis of three low molecular weight glutenin C -subunit genes isolated from Aegilops tauschii. Can J Plant Sci 87:273-280
Pistón F, Martín A, Dorado G, Barro F (2005) Cloning and molecular characterization of B-hordeins from Hordeum chilense (Roem. et Schult.). Theor Appl Genet 111: 551-560
Sabelli PA, Shewry PR (1991) Characterization and organization of gene families at the Gli-1 loci of bread and durum wheats by restriction fragment analysis. Theor Appl Genet 83:209-216
Shang HY, Wei YM, Long H, Yan ZH, Zheng YL (2005) Identification of LMW glutenin-like genes from Secale sylvestre Host. Russ J Genet 41:1372-1380
Shewry PR, Tatham AS (1990) The prolamin storage proteins of cereal seeds: structure and evolution. Biochem J 267:1-12
Shewry PR, Halford NG, Tatham AS (1989) The high molecular weight subunits of wheat, barley and rye. In:

Miflin BJ (ed) Genetics, molecular biology, chemistry and role in wheat gluten structure and functionality. Oxford surveys of plant molecular and cellular biology, vol 6 . University Press, New York, pp 163-219
Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596-1599
Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673-4680
Van Campenhout S, Vander Stappen J, Sagi L, Volckaert G (1995) Locus-specific primers for LMW glutenin genes on each of the group 1 chromosomes of hexaploid wheat. Theor Appl Genet 91:313-319
Yan ZH, Wan YF, Liu KF, Zheng YL, Wang DW (2002) Identification of a novel HMW glutenin subunit and comparison of its amino acid sequence with those of homologous subunits. Chinese Science Bull 47:220-225
Zhang W, Gianibelli MC, Rampling LR, Gale KR (2004) Characterization and marker development for low molecular weight glutenin genes from Glu-A3 alleles of bread wheat (Triticum aestivum. L.). Theor Appl Genet 108:1409-1419
Zhao XL, Xia XC, He ZH, Lei ZS, Appels R, Yang Y, Sun QX, Ma W (2007) Novel DNA variations to characterize low molecular weight glutenin Glu-D3 genes and develop STS markers in common wheat. Theor Appl Genet 114:451-460

