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Fluxes of CO2 (FCO2) and energy (latent heat, LE; sensible heat, H) exchange between ecosystems and atmosphere,
as measured by the eddy covariance technique, represent a fundamental data source for global-change research.
However, little is known about the uncertainties of fluxmeasurements at an ecosystem level in China. Here,we use
data from six eddy covariance tower sites in ChinaFLUX, including two forested sites, three grassland sites, and one
agricultural site, to conduct a cross-site analysis of random flux errors (RFEs) of FCO2, LE, and H. By using the daily-
differencing approach, paired observations are obtained to characterize the random error in these measurements.
Our results show that: (1) TheRFEs of FCO2, LE, andH in different ecosystems of ChinaFLUX closely followadouble-
exponential (Laplace) distribution, presumably due to a superposition of Gaussian distribution for high flux
magnitude. (2) The RFEs of FCO2, LE, and H are not homogeneous and appear to be a linear function of flux
magnitude. (3) Except forH, theRFEs of FCO2 and LE exhibit a distinct seasonal pattern. For FCO2, the dependence of
RFEs on wind speed varies somewhat according to vegetation type, whereas for LE and H, there is no such
dependence. The effect of temperature onRFEs is not statistically significant (Pb0.05). Both the distribution and the
relationship of RFEs with flux magnitude in ChinaFLUX are essentially in accord with those in AmeriFlux and
CarboEurope.
x: +86 010 6488 9399.
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1. Introduction

The long-term and continuous eddy covariance (EC) measurements
of ecosystem fluxes such as CO2, water, and energy between biosphere
and atmosphere at tower sites around the world (e.g., Baldocchi et al.,
2001; Yu et al., 2006; Mizoguchi et al., 2009) offer various opportunities
to improve our understanding about the fundamental processes of
ecosystem functions in both time and space (Baldocchi, 2003; Friend et
al., 2007). However, there is a growing recognition within the eddy-flux
community that more attention needs to be paid to the uncertainties
inherent in these EC measurements (Hollinger and Richardson, 2005;
Richardson et al., 2006; Lasslop et al., 2008). With the development of a
model-data fusion method in terrestrial ecosystem research, data
uncertainties are as important as data themselves and play a major role
in determining the outcome (Raupach et al., 2005). Therefore, how to
quantify the uncertainty of flux data and acquire the probability density
function (PDF) and its statistical characteristics have become a frontier
issue in global flux research.

Flux data actually are not deterministic; rather, they can be expressed
as the “correct” value plus or minus measurement error, which is called
uncertainty. Specifically, a fluxmeasurement (x) represents a sum of the
“true” flux (F) and the potential measurement errors, which can be
further divided into systematic errors (ε) and random measurement
errors (δ), namely x=F+ε+δ (Richardson et al., 2006). The systematic
errors and randommeasurement errors are usually evaluated separately.
The energy imbalance and incomplete nocturnal data may cause the
systematic errors, which are difficult to identify. However, the systematic
errors can be eliminated by calculating the bias. Identifying the source of
systematic error and how to reduce this error represent an active
research area in flux study (Goulden et al., 1996; Moncrieff et al., 1996;
Mahrt, 1998; Twine et al., 2000;Massman and Lee, 2002;Morgenstern et
al., 2004). In contrast to systematic error, random error is related to the
observational systems (e.g., gas analyzers, ultrasonic apparatus, data
acquisition system, and the calculationmethod), turbulent transport, and
the heterogeneity in flux footprint (Moncrieff et al., 1996). Inmost cases,
random measurement errors cannot be eliminated, but their numerical
value can be obtained by statistic analysis. Here, as regards the
uncertainty of flux observation data, we mainly focus on RFEs.

Extensive studies on the random errors of EC data have been
conducted by a repeated sampling method in a single tower or twin
towers (Hollinger and Richardson, 2005; Richardson et al., 2006; Rannik
et al., 2006) or statistical analysis of model residuals (Hagen et al., 2006;
Chevallier et al., 2006; Lasslop et al., 2008). Hollinger and Richardson
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(2005) studiedflux data uncertainty by using repeated samplingmethod
in two nearby towers in Howland Forest, pointing out that random
measurement error follows a double-exponential (Laplace) distribution
rather than a normal (Gaussian) distribution. Meanwhile, a daily-
differencing approach was proposed to quantify the RFEs in a single
tower (Hollinger and Richardson, 2005). Rannik et al. (2006) discussed
the uncertainty of flux observation data through use of the repeated-
sampling method at the same time in two nearby towers (within a
distance of 30 m) in Hyytiala of Finland. Richardson et al. (2006)
conducted a cross-site study on flux measurement errors in AmeriFlux,
including forest, grassland, and farmlandecosystems. Theydemonstrated
that flux measurement errors of different ecosystems follow a double-
exponential distribution as well. The relationships between measure-
ment errors and environment variables and flux magnitudes are also
examined. Based onmodel residuals, Richardson et al. (2008) conducted
a systematic analysis of the statistical characteristics of CO2 flux random
errors in several forest ecosystems in Europe, and they suggested that the
random error analysis method based onmodel residuals is a supplement
to the daily-differencing approach based on single (double)-tower data.

Based on these investigations, a number of studies on parameter
optimization and model-data fusion were conducted (Richardson and
Hollinger, 2005; Hagen et al., 2006; Lasslop et al., 2008). Regarding
analysis of randommeasurement error, Richardson and Hollinger (2005)
compared the effects of two different error distributions (Gaussian
distribution versus double-exponential distribution) onmodel parameter
selections. They also explored the relationship between randomerror and
environment factors using the maximum likelihood method for param-
eter optimization. Hagen et al. (2006) conducted uncertainty analysis of
gross ecosystem exchange (GEE) derived from 7 y of continuous eddy
covariance measurements in Howland Forest. In China, Liu et al. (2009)
analyzed the randomerror of CO2fluxmeasurements, and they employed
the bootstrapping method to evaluate different models and optimization
methods in influencing the estimate of key parameters and CO2 flux
components. Zhanget al. (2008)explored theeffect of errordistributionof
CO2 flux on key parameters in ecosystem carbon-cycle models. However,
the statistical properties of randommeasurement errors remain currently
under debate and need to be tested and verified at more flux towers
around theworld (Richardson et al., 2006; Lasslop et al., 2008;Williams et
al., 2009).

This paper seeks to obtain the statistical characteristics of RFEs for
FCO2, LE, and H; quantify the uncertainty of flux data; determine its
influencing factors; and compare the differences of the RFEs among
ChinaFLUX, AmeriFlux, and CarboEurope. Data used in our analyses are
from six sites in ChinaFLUX, including two forested sites, three grassland
sites, and oneagricultural site.Wefirst focus on evaluating the statistical
characteristics anddistributionofRFEs inCO2 andenergy (latent energy,
LE and sensible heat, H). Then we examine the relationship between
RFEs and fluxmagnitude as well as wind speed. The seasonality of RFEs
and the influence of temperature on the random error in all three fluxes
are also discussed. Finally we compare our results with similar studies
for the AmeriFlux and CarboEurope. All these works tend to provide
technical support for quantifying flux observation uncertainty and
properly evaluating flux observations, which in turn will be helpful for
model-data fusion research and model evaluation.

2. Data and method

2.1. Data

Data used in our analyses are obtained from six eddy covariance sites
within the ChinaFLUX network, representing a diverse range of
ecosystems: subtropical evergreen coniferousplantation (QYZ), northern
warm temperate deciduous broad-leaved forest (CBS), Qinghai-Tibet
Alpine meadow (HBGC), Qinghai-Tibet alpine grassland meadow (DX),
Inner Mongolia typical grassland (NM), and Huang-Huai-Hai farmland
(YC). The flux and routine meteorological measurements are operated
with the same set of instruments andprogramat the six forest sites (Yuet
al., 2006). Formost sites, at least 3 or 4 y of continuousmeasurements are
available. Anoverviewof these sites is given inTable1. Extensivedata and
site information are available online at the ChinaFLUX Web site (http://
www.chinaflux.org/).

The datasets are processed by using the flux data processing system
at ChinaFLUX (Li et al., 2008). The processing includes: (1) coordinate
rotation for 30-min flux data (Wilczak et al., 2001), (2) Webb–
Pearman–Leuning (WPL) correction (Webb et al., 1980; Leuning,
2004), (3) storage calculation for forested sites (Hollinger et al., 1994),
(4) outlier rejection (Papale et al., 2006), and (5) nighttime filtering
with u* threshold obtained by evaluating the relationship between
temperature and CO2 flux (Reichstein et al., 2005).

2.2. Method

2.2.1. Determination of flux uncertainty
Uncertainty associatedwith themeasured eddy covarianceflux canbe

defined as the variance of high-frequency data in average time (e.g.,
30 min), which can be detected by taking multiple measurements when
the data are relatively independent and the condition is stable and then
using the variability of these measurements to estimate the standard
deviation. However, flux is usually not stable, because of the influence of
phenologic and climate conditions. Therefore, simultaneous measure-
ments from two towers located nearby can be used to meet the
assumption of the repeated-samplingmethod (Hollinger and Richardson,
2005; Rannik et al., 2006). Given the fact that there are very few sites
where two adjacent towers can simultaneously measure fluxes for the
same ecosystem in ChinaFLUX, we use the daily-differencing approach as
described by Hollinger and Richardson (2005) to quantify the random
measurement errors. Specifically, a measurement pair (x1, x2) is
considered valid only if bothmeasurements aremade under “equivalent”
environmental conditions (PPFD within 75 μ mol m−2 s−1, air temper-
ature within 3 °C, and wind speed within 1 m/s) in the same successive
two days. These criteria are chosen as a trade off for two conflicting
requirements: (1) environmental conditions sufficiently similar that the
differencebetween themeasuredfluxes canbeattributed to randomerror
insteadof thedifferences in forcingvariables; and (2) a large enough set of
measurement pairs to accurately characterize the probability distribution
function (PDF) of the random error (Richardson et al., 2006). Regarding
the limitation of sampling length, the sample should be obtained formore
than 1 y. We use (x1-x2)/

ffiffiffi
2

p
to express the measurement errors, δ. The

standard deviation of random errors is used to characterize flux
measurementuncertainty. Finally,wecanestimate theRFEsbycalculating
the standard deviation of the differences, which is expressed as:

σðδÞ = σðx1−x2Þffiffiffi
2

p ð1Þ

2.2.2. Analysis of the RFEs
According to the traditional micrometeorologic method based on

turbulence theory (Lenschow et al., 1994; Mann and Lenschow, 1994),
the relationshipbetweenrandommeasurementerror andenvironmental
variables can be described as:

σ∝ j−F j
ffiffiffiffiffiffi
hτ
−uT

r
ð2Þ

where j−F j is the absolute value ofmean flux, hτ is the appropriate height
measure for the integral timescale, ū is the mean wind speed at the
measurement height, and T is the sampling period (e.g., T=1800 s for our
study). From Eq. (2), we can expect that the flux magnitude and wind
speed may be the main factors influencing randommeasurement error.

In this study, we focus on the scaling of RFEs with j−F j and ū. The
inferred random errors are divided into many bins on the basis of flux
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Table 1
Site information for forested, grassland, and agricultural site in ChinaFLUX.

Site Abbreviations Long. (°E) Lat. (°N) Vegetation type Elevation (m) Measurement height (m) Period

Qianyanzhou QYZ 115.07 26.73 Sub-tropical planted forest 100 23.6 2003–2006
Changbaishan CBS 128.10 42.40 Temperate deciduous mixed forest 738 41.5 2003–2006
Haibeiguancong HBGC 101.32 37.60 Alpine shrub 3293 2.2 2003–2006
Dangxiong DX 91.08 30.85 Alpine meadow 4333 2.2 2004–2006
Neimeng NM 117.45 43.50 Temperate steppe 1187 2.5 2004–2006

Maize field, summer
Yucheng YC 116.60 36.95 Wheat field, winter 28 2.2 2003–2006

Table 2
Statistical properties of the inferred RFEs in FCO2, LE and H for CBS site (2003–2006) during different time of the year and different time of the day.

Flux Time Number of observations Mean Standard deviation Skewness Kurtosis

FCO2 (μmol m−2 s−1) Day 1712 −0.03 2.89 0.27 14.91
Night 651 −0.22 1.91 0.00 8.27
Growing season (DOY102-295) 1324 −0.15 3.48 0.28 9.59
Dormant season 1039 0.00 0.80 −0.17 5.63
All 2363 −0.08 2.66 0.28 15.74

LE (W m−2) Day 2113 0.56 36.10 0.00 13.86
Night 1594 1.28 27.11 1.34 76.52
Growing season (DOY102-295) 1783 0.88 44.50 0.23 15.60
Dormant season 1924 0.87 14.34 1.01 82.14
All 3707 0.87 32.54 0.33 27.82

H (W m−2) Day 2213 −0.18 26.24 −0.22 7.99
Night 1623 0.37 18.43 −0.56 9.03
Growing season (DOY102-295) 1855 −0.25 24.90 −0.50 9.78
Dormant season 1981 0.33 21.61 −0.02 7.13
All 3836 0.05 23.26 −0.31 8.97
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magnitude with an equal number of data points, and the standard
deviation (σ(δ)) is calculated accordingly. Furthermore, an analysis of
variance (ANOVA) is conducted on the resulting data set by calculating
σ(δ) for each vegetation type across all possible bins of environment
variables ( −F×ū), with each j−F j and ū as ANOVA factors. When it comes
to explaining the seasonality of uncertainty, we group the RFEs into 12
bins according tomonth. Themeanvalueoffluxmagnitude, environment
variables, and the standard deviation of random error (σ(δ)) for each
group are calculated. Finally, a partial correlation analysis is conducted to
illustrate the inherent relationship between RFEs and environment
factors.

3. Results

3.1. Statistical characteristics of RFEs

3.1.1. Statistical properties
After estimating RFEs for six sites by using the daily-differencing

approach, statistical properties (e.g., the mean, standard deviation,
kurtosis, and skewness) of the inferred randomerror,δ = ðx1−x2Þ=

ffiffiffi
2

p
,

Table 3
Random flux errors (σ(δ)) estimation in FCO2 , LE, and H at different sites during different

Flux Time QYZ CBS

FCO2 (μmol m−2 s−1) Day 4.10 2.89
Night 1.70 1.91
All 3.91 3.48 (G)

0.80 (D)
LE (W m−2) Day 49.77 36.10

Night 34.97 27.11
All 48.14 44.50 (G)

14.34 (D)
H (W m−2) Day 31.70 26.24

Night 18.27 18.43
All 30.31 24.9 (G)

21.61 (D)

Note: G: Growing season (DOY102-295 in CBS; DOY115-300 in HBGC; DOY123-280 in NM; D
season in YC.
are calculated. Themean values of δ for each of FCO2, LE, and H are close
to zero (Table 2, exemplary for the CBS site). Whereas the standard
deviations of the flux differences σ(δ) among FCO2, LE, and H also have
been shown to vary from site to site (Table 3), especially in relation to
vegetation type and environment factors (e.g., time of the year and time
of the day). For FCO2, the σ(δ) ranges from 0.3 to 5.0, for LE from 9.2 to
49.8, and for H from 15.7 to 43.9. The overall σ(δ)of LE tends to be
somewhat larger than that in H during the growing season. YC appears
to be an exception, while the random error in H (40.3 Wm−2) is higher
than that in LE during the maize season (35.6 W m−2). For both FCO2

and LE across all sites, RFEs are larger during daytime than at night, and
larger during the growing season than the rest of the year, whereas
these tendencies are not obvious in H.

RFEs for FCO2, LE, andH in both carbon and energyfluxes at grassland
sites are smaller compared with forested sites. For example, during
daytime, RFEs in FCO2 are roughly 4-fold larger atQYZ (σ(δ)=3.91 μmol
m−2 s−1) than that atHBGC (σ(δ)=0.93 μmolm−2 s−1), and theRFEs in
H at NM are twice as large as that at DX. In cropland ecosystems, as the
maize-growing season is more productive, the RFE in FCO2 (σ(δ)=5.0)
appears to be about 2.5-fold larger than that during wheat-growing
time of the year and different time of the day.

HBGC NM DX YC

0.94 0.85 0.58 4.19
0.91 0.88 0.53 2.65
1.11 (G) 1.00 (G) 0.69 (G) 5.00 (G)
0.29 (D) 0.45 (D) 0.29 (D) 1.87 (D)
20.93 36.33 21.54 31.11
21.03 34.35 30.69 22.63
30.30 (G) 36.12 (G) 32.59 (G) 35.64 (G)
9.16 (D) 34.92 (D) 16.06 (D) 21.14 (D)
25.91 38.00 23.29 31.06
19.15 36.15 27.62 39.25
24.34 (G) 28.75 (G) 15.72 (G) 40.3 (G)
24.37 (D) 43.85 (D) 28.39 (D) 25.56 (D)

OY123-289 in DX); D: Dormant season; M:Maize season (DOY 161-275) andW:Wheat
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season (σ(δ)=1.9). Furthermore, even among forested sites there tends
to be a substantial variation in RFEs, and the RFEs of FCO2, LE, and H at
QYZ clearly are higher than that at CBS,whichmaybe related to localized
climate conditions at these two forested sites.

3.1.2. Probability distribution
For all sites, and for each of FCO2, LE, and H, the error distributions

clearly follow a non-normal distribution, with a very tight central peak
but also very heavy tails (Fig. 1c, g, k). The skewness of the RFEs is close
to zero (Table 2, exemplary for CBS site), suggesting that the RFEs across
all sites are close to symmetric distribution. Compared with normal
(Gaussian) distribution, the double-exponential (Laplace) distribution
tends to provide a better description of the error, especially with an
excess kurtosis (for FCO2, kurtosis N8, for LE, kurtosis N12, and for H,
kurtosis N8, Table 4), while for normal distribution the kurtosis is equal
to 3, and a high kurtosis indicates a strong peak. However, the
distribution of the RFEs varies fromsite to site, and the error distribution
does not perform well for all sites. The Kolmogorov–Smirnov test of
normality is used for random measurements errors at all sites. The
diagnostic test shows that random measurements errors are not
normally distributed (Pb0.01). Therefore, compared with the normal
distribution, double-exponential distribution can provide a better fit to
the random error. The high peak in the double-exponential distribution
means that the small error has a higher frequency than the normal
distribution, and thick tails depict that the big error also has a higher
frequency than the normal distribution.

However, if we group RFEs according to the flux magnitude, we
find a normal distribution for high flux magnitude in FCO2 and H,
while for LE the distribution is between Gaussian and Laplace
distribution (see Fig. 1a, e, i, exemplary for CBS site). When adding
more data, the distribution is rather double-exponential.With regard to
the RFEs, we have confirmedwith our data that the double-exponential
distribution of RFEs is largely due to a superposition of normal
distribution, especially for FCO2 and H. Furthermore, pursuing another
possibility to show the normal distribution of RFEs, we normalize the
RFEs (error-mean of the error/standard deviation of the error) with the
standard deviation derived within a time window of seven days, which
transforms all error distributions to a standard deviation of unity. For
FCO2 and H, the normalized errors are closer to normal distribution
(Fig. 1, d, l), whereas for LE, the normalized error distribution is more
peaked (Fig. 1h). For FCO2, LE, and H, the normalized errors reduce the
kurtosis and largely change the distribution to a less-peaked shape
compared with the original distribution (Table 4).

3.2. Relationship between RFEs, flux magnitude, and wind speed

From Eq. (2), it appears that the inferred random flux error can be
attributed to the flux magnitude ( F) and wind speed (ū). For FCO2 in
forested sites, analysis of variance (ANOVA) shows that the flux
magnitude explained 72% of the variance in FCO2 random error, with
an additional 26% accounted for by wind speed. Similarly, at the
agricultural and forested sites, both flux magnitude and wind speed
account for a significant amount of variation in FCO2 random error
(Pb0.001). For LE and H, the flux magnitude explained 50–75% of the
variation in flux uncertainty. However, for LE and H, there is no
dependence of the random error on wind speed at any of the sites (e.g.,
for LE, P=0.95, P=0.14, P=0.88 at CBS, DX, and QYZ, respectively; for
H, P=0.14, P=0.63, P=0.05, in the same order).

Fig. 2 shows the relationship between flux magnitude and RFEs in
FCO2, LE, and H. The errors are not homogeneous. Further analyses
indicate that the RFEs are heteroscedastic and consistently increase with
an increasing flux magnitude across all sites. For both CO2 and energy
fluxes at all sites, a linear relationship between the absolute value of flux
magnitude and random flux error is observed (Fig. 2, for most sites,
R2N0.9), with an exception for random error in H at the agricultural site.
For CO2, at the forested sites, it appears that the slope of the relationship
for −F≥0 is much higher than that for −F≤0. Random errors increase by
0.61 μmol m−2 s−1 for every 1.0 μmol m−2 s−1 increase in −F≥0 (CO2

emission), but by only 0.33 μmol m−2 s−1 for every 1.0 μmol m−2 s−1

increase in −F≤0 (CO2 uptake). Meanwhile, both the slope and intercept
of the linear function vary somewhat according to vegetation type
(Table5). For example, the slope is steeper at the forested sites thanat the
grassland and agricultural sites, indicating that the random errors
increase more rapidly with increases in the flux magnitude at the
forested site compared with the grassland and agricultural sites. From
what has been illustrated,we candetermine that the randomerrorfluxes
do not approach 0 as −F→0. Therefore, there appears to be an underlying
base uncertainty that is present regardless of the size of the flux, one
implicationofwhich is that the relativeerror tends tobecomesmall as the
flux magnitude becomes larger (Richardson et al., 2006). The non-zero
base uncertainty may be related to other factors that influence RFEs in
addition to flux magnitude.

After comparing and analyzing the result of RFEs, an exponential
relationship can be used to express the relationship betweenRFEs in FCO2

andwind speed (Fig. 3). Generally, the higher thewind speed, the smaller
the random flux error. Also, the dependence of FCO2 random error on
wind speed varies somewhat according to vegetation type. The
relationship between the RFEs of FCO2 andwind speed can be reasonably
well approximated using a function of the formy = aebð

−uÞ, where
a=5.71 b=–0.23 (for forested sites, R2=0.91); a=5.27, b=–0.23 (for
grassland sites, R2=0.86), and a=1.03, b=–0.11 (for agricultural site,
R2=0.65). In forest ecosystems, the ground surface is usually a CO2

source, and the vegetation community is a CO2 sink. Therefore, it may
need an eddy with low frequency and energy for the complete mixing of
the vegetation community and the forest flow system. For a multi-layer
system, FCO2 randomfluxerror stronglydependsonwindspeed.Dwarf or
sparse communities can be considered as a single-layer ecosystem, and
thus the random flux error depends less on wind speed. From what has
beendiscussed,wecanfind that thegrasslandsiteshave a relativelyflatter
exponential curve than that at forested sites. Formost of these sites, there
is a larger random error at lower wind speed.

3.3. Seasonality of the flux uncertainty

Because of the way in which the random flux error generally
correlates with flux magnitude, the random error varies seasonally
(Fig. 4). There is a distinct seasonal pattern for the RFEs of FCO2 and LE,
whereas the seasonality of random error in H is not obvious.
Generally, the seasonal patterns of RFEs in FCO2 and LE are similar
to the seasonal variation in FCO2 and LE (Fig. 4). For example, both
RFEs and flux magnitude are small in winter months, but they reach
the highest value in July and August. The average random error in
FCO2 can reach 3.0 μmol m−2 s−1 during the growing season
(April-September) and less than 1 μmol m−2 s−1 for the rest of the
year. Random error in LE is generally N35 W m−2 in the growing
season and less than 20 W m−2 during other months. By comparison,
at all sites, the random error in H is about 25 W m−2 throughout the
year (with a maximum value in April, i.e., 36.5 W m−2).

Specifically, the random error in FCO2 and LE at the forested sites is
lager than that at the other ecosystem types, except for the maize
season in cropland sites (YC). At forested sites, the FCO2 and LE
random error is about three times larger during the growing season
than during the rest of the year. At the agricultural site, the seasonal
variation of random error in FCO2 and LE at YC is relatively obvious.
There are two peaks in the annual curve (May and August),
corresponding to the maize-growing and wheat-growing seasons,
respectively, at YC. In three grassland sites, the RFEs remain at low
values and with a small peak in the growing season (April–October),
which also mimics the seasonal variation in FCO2 and LE. There is no
clear seasonality in the uncertainty of H, indicating that uncertainty
for this flux is not modulated by biology; rather, it is totally controlled
by physical factors. The uncertainty of LE and FCO2, however,



Fig. 1. Distributions of the inferred random flux errors in CO2 (a–d), LE (e–h), and H (i–l) at CBS site. (a), (e),( i): errors of high flux magnitudes (top 10%); (b), (f), (j): errors of high and medium flux magnitude (top 50%); (c), (g), (k): all
inferred errors; (d), (h), (l): errors normalized with standard deviation derived within a time window of seven days.
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Table 4
Kurtosis of original (orig) random flux errors and errors normalized (norm) of FCO2, LE
and H.

Site FCO2(orig) FCO2(norm) LE(orig) LE(norm) H(orig) H(norm)

CBS 8.53 3.64 12.31 7.03 8.26 4.27
QYZ 15.74 4.43 27.82 5.48 8.97 5.76
HBGC 11.24 3.99 35.08 8.78 22.12 6.78
NM 8.74 3.89 27.22 7.83 32.89 5.68
DX 8.55 3.76 38.34 5.98 183.50 6.19
YC 17.68 4.63 18.01 7.51 9.21 5.04

Table 5
The linear relationship between random flux errors and the flux magnitude.

Flux Vegetation Type −
F≥0 −

F≤0

FCO2 Forested sites 0.41+0.61FCO2 (0.96) 0.98−0.33FCO2 (0.99)
Grassland Sites 0.21+0.44FCO2 (0.98) 0.73−0.08FCO2 (0.94)
Agricultural site 0.29+0.50FCO2 (0.98) 1.70−0.21FCO2 (0.92)

LE Forested sites 13.86+0.30LE (0.96) 6.00−2.40LE (1.00)
Grassland Sites 10.79+0.16LE (0.75) 1.86−2.81LE (1.00)
Agricultural site 11.74+0.22LE (0.83) 7.05−1.41LE (1.00)

H Forested sites 14.22+0.20H (0.91) 7.63−0.31H (0.94)
Grassland Sites 10.97+0.15H (0.95) 5.85−0.61H (0.99)
Agricultural site 33.05+0.06H (0.45) 28.77−0.06H (0.04)

Note: Correlation coefficients (R2) are in brackets.
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responds to environment variables differently in the growing and
non-growing season, suggesting a biological cause.

As vegetation growth is usually controlled by environment
variables such as radiation temperature and precipitation, there
Fig. 2. Scaling of random flux errors of FCO2(a),LE(b) and H(c)with flux magnitude for
threevegetation types. Linear regressions (fit separately for −

F≥0 and −
F≤0) are illustrated.
appears to be a scaling relationship between radiation (net radiation,
Rn and PPFD) and RFEs in FCO2, LE, and H (Richardson et al., 2006).
Here we mainly focus on discussing the influence of temperature on
the variance of RFEs, while temperature is the main factor that
Fig. 3. Scaling of random flux errors in FCO2 with mean wind speed for three vegetation
types. (a) Forested sites; (b) grassland sites; (c) agricultural site.
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Fig. 4. Seasonality of the random flux errors in FCO2, LE, and H (a, c, e) and the seasonal variation for FCO2, LE, and H (b, d, f).
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indicates seasonality. The relationship between RFEs for FCO2, LE, H,
and temperature is illustrated in Fig. 5. The results show that the
relationship tends to vary somewhat according to vegetation type. In
forest ecosystems, for FCO2, the random error increases as temper-
ature rises within a certain range. When temperature reaches a
certain value, RFEs decrease as temperature increases. But this critical
value varies with sites (e.g., 21.89 °C at QYZ). In grassland ecosystems,
when it comes to alpine meadows in HBGC, there is a consistent
correlation between random flux error and temperature, regardless of
whether in the growing or dormant season. However, when it comes
to NM and DX, there are critical temperatures: 10 °C at DX and 20 °C at
NM. In YC farmland ecosystems, due to the phonological reasons,
there are completely different tendencies in two seasons: random flux
error increases with increasing temperature in the maize-growing
season and decreases in the wheat-growing season. For FCO2,
generally, a positive correlation between FCO2 and temperature can
be found, and this relationship may change if there are changes in
other environmental variables (e.g., precipitation and radiation). For
example, there is often a drought in QYZ and NM during the growing
season, and the photosynthesis capacity may be weakened by water
deficiency, which in turn leads to a lower net carbon exchange. At DX,
an EC tower grassland site located on the Qinghai-Tibet Plateau,
similar results can be explained by the dual influences of water
deficiency and extra radiation, and the non-monotonic relationship
between RFEs in FCO2 and temperature can be explained by the
complex relationship between flux magnitude and temperature. For
LE, there tends to be a positive correlation between RFEs and
temperature across all sites, as the LE often increases with increasing
temperature. For H, the relationship between random flux and
temperature is not significant, which coincided with the result in
Fig. 4.

Furthermore, as flux magnitude and temperature may be related
to each other, partial correlation analysis between RFEs and
influencing factor is conducted. At all sites, and for each of FCO2, LE,
and H, the partial correlation coefficient between RFE and tempera-
ture is obviously lower than the correlation coefficient (RN0.6, Pb0.01
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Fig. 5. Relationship between temperature and random flux errors in FCO2 (left), LE (middle), and H (right) at different vegetation type. (a), (d), (g): forested sites; (b), (e), (h):
grassland sites; (c), (f), (i): agricultural site.
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at all sites) obtained by a simple linear correlation analysis (Table 6)
and even shows no dependence on the random error on temperature
at any site (FCO2: P=0.42; P=0.36 and P=0.50 at YC, QYZ, and NM
sites, respectively; LE: P=0.93; P=0.29, and P=0.15 at the same
site). Therefore, we conclude that the relationship between environ-
ment variables and flux random error is not straightforward. It can be
explained by the effect of temperature on flux magnitude, which in
turn affects the random flux error.

4. Discussion

4.1. Interpretation of the characteristics of flux uncertainty

The analyses presented here demonstrate that the RFEs in tower-
based measurements of CO2 and energy fluxes are characterized by a
non-stationary probability distribution, in that the statistical proper-
ties of the errors vary over time and in relation to vegetation type.
Generally, the double-exponential distribution provides a better fit
with the random error than the normal (Gaussian) distribution,
capturing the high peak and thick tail. This is consistent with the
results of the repeated-sampling method at two towers in the
Howland Forest of AmeriFlux (Hollinger and Richardson, 2005), the
repeated-sampling method at single towers at seven sites of
AmeriFlux (Hollinger and Richardson, 2005), and the model-residual
method in forest ecosystems in CarboEurope (Lasslop et al., 2008;
Richardson et al., 2008). In particular, it would appear that while RFEs
tend to be approximately Gaussian for high flux measurements (e.g.,
top 10% of the entire data sets), they are frequently non-Gaussian for
low flux measurements. Lasslop et al. (2008) and Stauch et al. (2008)
suggest that heteroscedasticity, combined with the varying frequency
of different flux magnitude, could result in an error distribution that
appears non-Gaussian, and the strongly leptokurtic error distribution
is largely due to a superposition of Gaussian distribution for high flux
magnitude. These distributions may have resulted from several
factors. First, for all fluxes, the data are not constant, and when this
heteroscedasticity is combined with the frequency of different flux
magnitudes (the instances of low values are far more frequent than of
high values), a strongly peaked error distribution may result. The
second factor leading to the non-normal error distribution is related
to the measurement system (Press et al., 1993). Although the
observational errors for most natural phenomena follow a normal
distribution, the possibility of other distribution cannot be ruled out.
The measurement system is carefully maintained by researchers,
however occasionally “glitches” caused by power fluctuations can
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Table 6
Correlation matrix for random flux errors in FCO2, LE, and H, flux magnitude, and temperature.

Site FCO2 LE H

σ(δ) |F| T σ(δ) |F| T σ(δ) |F| T

QYZ σ(δ) 1.00 0.95** 0.26 1.00 0.80** 0.62** 1.00 0.94** −0.58 **
|F| 0.99** 1.00 0.93** 0.98** 1.00 0.94** 0.95** 1.00 0.83 **
T 0.93** 0.93** 1.00 0.96** 0.94** 1.00 0.68 0.83** 1.00

CBS σ(δ) 1.00 0.99** −0.56** 1.00 0.88** −0.30 1.00 0.92** 0.17
|F| 1.00** 1.00 0.87** 0.95** 1.00 0.87** 0.93** 1.00 0.42
T 0.84** 0.87** 1.00 0.78** 0.87** 1.00 0.45 0.42 1.00

HBGC σ(δ) 1.00 −0.39 0.77** 1.00 −0.15 0.57** 1.00 0.37 0.78 **
|F| 0.86** 1.00 0.96** 0.85** 1.00 0.96** 0.48 1.00 0.34
T 0.94** 0.96** 1.00 0.90** 0.96** 1.00 0.81** 0.34 1.00

DX σ(δ) 1.00 0.55** 0.20 1.00 0.88** −0.53 1.00 0.78** 0.89 **
|F| 0.92** 1.00 0.93** 0.96** 1.00 0.94** 0.87** 1.00 0.73 **
T 0.88** 0.93** 1.00 0.85** 0.94** 1.00 0.94** 0.73** 1.00

NM σ(δ) 1.00 0.93** −0.20 1.00 0.88** −0.41 1.00 0.94** 0.85 **
|F| 0.98** 1.00 0.87** 0.97** 1.00 0.94** 0.95** 1.00 0.71**
T 0.83** 0.87** 1.00 0.87** 0.94** 1.00 0.86** 0.71** 1.00

YC σ(δ) 1.00 0.93** −0.24 1.00 0.65** −0.03 1.00 −0.25 0.79 **
|F| 0.96** 1.00 0.74** 0.90** 1.00 0.92** 0.41 1.00 0.64**
T 0.67** 0.74** 1.00 0.82** 0.92** 1.00 0.82** 0.64** 1.00

Pair-wise correlation coefficients are shown in the lower triangle, while partial correlation coefficients are shown with underline; σ(δ): Random flux error, |F|: flux magnitude, T :
temperature. The level of significance is indicated (**Pb0.05).
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occur, and contamination of other factors results in measurements
that are far from accurate, which collectively leads to a non-normal
distribution (Hollinger and Richardson, 2005).

From this study,wefind that themanner inwhich the randomerrors
of three fluxes in ChinaFLUX scales with the fluxmagnitude is similar to
that presented previously (e.g., Hollinger and Richardson, 2005;
Richardson et al., 2006; Stauch et al., 2008). The linear relationship
between RFEs and flux magnitude is consistent in ChinaFLUX, Ameri-
Flux, and CarboEurope (Table 4). Meanwhile, the linear relationship
varies somewhat according to ecosystem type, andRFEs in forested sites
are more influenced by flux magnitude than grassland ecosystems.
Whereas the relationship between RFEs in FCO2 and flux magnitude is
similar with the same vegetation type, with little difference in the slope
and intercept. Richardson et al. (2008) point out that the non-zero
intercept in Fig. 2 and Table 5means that large-magnitude fluxes have a
better signal-to-noise ratio andwill still exert a greater influence during
the optimization than small fluxes.

We also find that, with the single-tower repeated-sampling method
in ChinaFLUX and AmeriFlux, the variance degree of random error in
FCO2 andfluxmagnitude for −

F≥0 (CO2 emission) is higher than that for
−F≤0 (CO2 uptake) (Table 7). However, this phenomenon does not occur
in forest ecosystem of CarboEurope, regardless of the use of the daily-
differencing method or model-residual method. The most probable
reason is the pre-processing of flux data (e.g., the determination of u*
and the standard for rejecting abnormal value, etc.), as there is a stricter
pre-processing standard in CarboEurope than that in ChinaFLUX and
AmeriFlux (Richardson et al., 2008). In conclusion,fluxmagnitude could
be one of the main reasons driving flux uncertainty, which may be
Table 7
Comparison of the relationship between CO2 flux random error and flux magnitude among

Flux Ecosystem
type

ChinaFLUX (daily-differencing
approach) (this study)

AmeriFlux (daily-d
approach) (Richar

F ̅≥0 F ̅≤0 F ̅≥0

FCO2 Forest 0.41+0.61FCO2 0.98−0.33FCO2 0.62+0.63FCO2

Grassland 0.21+0.44FCO2 0.73−0.08FCO2 0.38+0.30 FCO2

Agriculture 0.29+0.50FCO2 1.70−0.21FCO2 –

LE Forest 13.86+0.30LE 6.00−2.40LE 15.3+0.23LE
Grassland 10.79+0.16LE 1.86−2.81LE 8.1+0.16LE
Agriculture 11.74+0.22LE 7.05−1.41LE –

H Forest 14.22+0.20H 7.63−0.31H 19.7+0.16H
Grassland 10.97+0.15H 5.85−0.61H 17.3+0.07H
Agriculture 33.05+0.06H 28.77−0.06H –
influenced mainly by the intermittent turbulence transmission, rather
than the measurement system (ultrasonic apparatus and gas analyzer
etc.). This tendency is similar to the result of the error model by Mann
and Lenschow (1994).

The dependence of FCO2 random error on wind speed varies
somewhat according to vegetation type. FCO2 random error decreases
dramatically at high wind speeds for most sites, which is consistent
with the theory of Mann and Lenschow (1994). The phenomenonmay
be explained by the fact that high wind speeds lead to sufficient
turbulent transport between ecosystem and the atmosphere, and
measurements taken during greater turbulence are closer to the
actual value than those obtained at low wind speeds. Because of the
way in which the random flux error generally correlates with flux
magnitude, the random error varies seasonally. As temperature is the
main limiting factor of vegetation growth, there tends to be a
relationship between RFEs and temperature. However, partial
correlation analysis shows that there is no significant relationship
between RFEs and temperature, which further demonstrates that the
flux magnitude is a primary factor influencing the variance of RFEs.

4.2. Influence of CO2 flux uncertainty on model parameter estimate and
CO2 components

Studies have shown that observation uncertainty has significant
impact on model parameter estimates and predictions (Richardson
and Hollinger, 2005; Trudinger et al., 2007; Lasslop et al., 2008; Zhang
et al., 2008; Liu et al., 2009).According to the results of ChinaFLUX and
previous studies in AmeriFlux, and CarboEurope (Richardson et al.,
ChinaFLUX, AmeriFlux, CarbonEurope for different ecosystems.

ifferencing
dson et al., 2006)

CarbonEurope (Richardson et al., 2008)

F ̅≤0 Daily-differencing approach Model residual approach

1.42−0.19FCO2 1.47+0.12|FCO2| 1.69+0.16|FCO2|
0.47−0.2FCO2 – –

– – –

6.2−1.42LE – –

No data – –

– – –

10−0.44 H – –

13.3−0.16H – –

– – –
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2006, 2008; Lasslop et al., 2008), RFEs are characterized by non-
stationary probability distributions, in that the statistical properties of
the error vary over time and in relation to the magnitude of the flux.
The non-normality and homoscedasticity in RFEs provide a solid
foundation for implementing a weighted optimization scheme in
conducting model-data syntheses, whereby observations measured
with greater confidence (lower standard deviation) receive more
weight during the optimization (i.e., in the cost function) than
observations measured with less confidence.

Ordinary least-square fitting can yield maximum likelihood
parameter estimates when the data meet the assumption of normality
and homoscedasticity. However, when these assumptions are not
met, other data-fitting methods should be used. Given the double-
exponential distribution of RFEs, maximum-likelihood fitting should
be based on minimizing the sum of the absolute deviation. A key
difference between the least-square criterion and the absolute
deviation criterion is that, with least squares, outliers exert a much
stronger influence on the fit, because the deviations are minimized.
Thus, outliers, which may have no biological significance, should not
be given undue weight. Lasslop et al. (2008) also suggest that the
proper implementation of the random error standard deviation
scaling with flux magnitude can significantly reduce the parameter
uncertainty and often yield parameter retrievals that are closer to the
true value than by using ordinary least squares. In addition, the
physiological parameters derived from eddy covariance data are very
useful for scaling exercises and model-data synthesis (Xiao et al.,
2004; Wang et al., 2007; Williams et al., 2009). Therefore, knowledge
of the random errors in half-hourly flux measurement is critical for
parameter estimation and gap-filling of flux data. Meanwhile, flux
uncertainty information is also necessary for evaluating the accumu-
lated flux and uncertainty in temporal integrated (daily, monthly, and
annual) fluxes.

Knowledge of flux uncertainty is important for evaluating
independently formulated models against flux data and also neces-
sary for model-data synthesis (i.e., data assimilation). How to adopt
an effective method to reduce the uncertainty of measurements and
to improve the prediction of flux exchange between ecosystem and
the atmosphere is essential for global-change studies. Therefore,
future work is needed to further integrate sources of uncertainty,
evaluate alternate modeling techniques, and generalize results across
multiple sites.

5. Conclusions

In this study, we use the daily-differencing approach to conduct an
uncertainty analysis of CO2 and energy flux measurements. Results
from six eddy covariance tower sites in ChinaFLUX have been used to
show that the distribution of RFEs in FCO2, LE, and H appears to follow
a double-exponential distribution, rather than normal distribution,
which is basically in accord with the results in AmeriFlux and
CarboEurope. Meanwhile, this strongly leptokurtic error distribution
is revealed to be largely due to a superposition of Gaussian
distribution for high flux magnitude. Furthermore, the standard
deviation of RFEs is not constant, but heteroscedastic with the
magnitude of the flux, and it varies as a function of environment
variables (e.g., wind speed for FCO2). Because the random error is
non-normal and heteroscedastic (non-constant), the two assump-
tions (i.e., normality and homoscedasticity) of ordinary least-squares
optimization is no longer met, and the ordinary least squares need to
be extended to weighted least squares or other data-fitting methods
based on minimizing the sum of the absolute deviation. We also show
that the RFEs vary from site to site and are somewhat related to
vegetation type. There is an obvious seasonality pattern of RFEs in
FCO2 and LE, but not in H, and the variation of RFEs can be primarily
attributed to the flux magnitude. Environment variables (e.g.,
temperature) affect RFEs by changing the flux magnitude.
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