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Abstract

Background: With the development of genome-sequencing technologies, protein sequences are readily obtained
by translating the measured mRNAs. Therefore predicting protein-protein interactions from the sequences is of
great demand. The reason lies in the fact that identifying protein-protein interactions is becoming a bottleneck for
eventually understanding the functions of proteins, especially for those organisms barely characterized. Although a
few methods have been proposed, the converse problem, if the features used extract sufficient and unbiased
information from protein sequences, is almost untouched.

Results: In this study, we interrogate this problem theoretically by an optimization scheme. Motivated by the
theoretical investigation, we find novel encoding methods for both protein sequences and protein pairs. Our new
methods exploit sufficiently the information of protein sequences and reduce artificial bias and computational cost.
Thus, it significantly outperforms the available methods regarding sensitivity, specificity, precision, and recall with
cross-validation evaluation and reaches ~80% and ~90% accuracy in Escherichia coli and Saccharomyces cerevisiae
respectively. Our findings here hold important implication for other sequence-based prediction tasks because
representation of biological sequence is always the first step in computational biology.

Conclusions: By considering the converse problem, we propose new representation methods for both protein
sequences and protein pairs. The results show that our method significantly improves the accuracy of protein-
protein interaction predictions.

Background
The concerted interactions of thousands of proteins in
cells form the basis of most of the biological processes.
Genome-wide identification of protein-protein interac-
tions is important to understand the underlying
mechanisms of many biological phenomena e.g. cell
cycles, apoptosis, signal transduction, and pathogenesis
of diseases. Recently, high-throughput experimental
methodologies have been developed to screen the pro-
tein-protein interactions (PPIs) in a genome-wide way,
e.g. yeast two-hybrid systems [1], mass spectrometry
[2,3], and protein microarrays [4,5]. But these genome-

wide studies are limited to a few of model organisms,
for example, Escherichia coli [6], Helicobacter pylori [7],
Saccharomyces cerevisiae [3,8,9], Caenorhabditis elegans
[10], Drosophila melanogaster [11], and Homo sapiens
[12,13]. These preliminary explorations provide valuable
resources to study the model organisms [14]. More
importantly, it allows us to learn the interacting rules
from the available PPIs to construct a universal predic-
tor for accelerating the mapping of whole interactomes
of organisms, especially those species barely
characterized.
To construct a universal predictor, we need to extract

protein attributes that are crucial to PPIs predictions.
Among the various attributes of proteins, the primary
sequences are the most basic and the easiest to obtain
because of the rapid development of genomic sequen-
cing technologies. In addition, the primary sequences of
proteins virtually specify their structures that provide
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the molecular basis for PPIs. So protein primary
sequences hold the promise to contain virtually suffi-
cient information to construct the most universal pre-
dicting method [15].
We know that almost all proteins are composed of

twenty amino acids but different proteins have various
lengths. Here the first challenge to construct a universal
PPI predictor is that how to represent the various lengths
of proteins by numerical vectors with the same dimension
if vector-based computational methods are used. Even if
the methods are not based on vectors, what features of the
protein sequences are important to PPIs should be
addressed first. So far, many methods have been proposed
[15-20]. However the converse problem, that is, to what
extent the protein sequences can be reconstructed based
on their vector representations, is often untouched.
Obviously, addressing this converse problem will facilitate
the comparison of various representation schemes. Here,
we develop an optimization model to evaluate theoretically
the qualities of various representation schemes by consid-
ering the converse problems of protein representation as
well as the computational costs.
Based on the key ingredients revealed by the optimiza-

tion model, we suggest new coding methods for both
protein sequences and protein pairs. Strict evaluations
on datasets of Escherichia coli and Saccharomyces cerevi-
siae suggest that our new vector representation for pro-
tein sequences improves the prediction accuracy
significantly while reducing greatly the computational
complexity. The new vector representation of the pro-
tein pairs further improves the prediction accuracy and
has excellent theoretical properties, i.e., symmetry, rever-
sibility, and unbiasedness.

Results
Evaluating the converse problem of protein vector
representations
We consider two theoretical aspects to evaluate various
vector representations of protein sequences. One is to
what extent the protein sequence information is
extracted by the vectors. This can be evaluated by
checking whether and how protein sequences can be
constructed conversely from the vectors. The other is
how the vector dimension increases as the information
extracted. Because of the curse of dimensionality, repre-
sentations with low vector dimension are appreciated in
real applications. These criteria can be summarized as
the following optimization model:

min dim(V) (1)

s.t.

V = f (S) (2)

S = g(V) (3)

where S is a set of protein sequences, V is the vector
representation of S generated by the mapping f and g is
the inverse function of f. dim(V) means the dimension
of V .
Based on the evaluation model, we compared the

available k-mer based (denoted by K) [15,16,20] and seg-
mentation based (denoted by P) [21] vector representa-
tions. k-mer based representation counts the number of
each k-mer appearing in protein sequences, so the vec-
tor dimension is 20k, increasing exponentially as k.
When k is large enough (often much larger than three),
protein sequences can be re-constructed uniquely from
the corresponding vectors by seeking an Eulerian trail in
a network constructed by the relationships of k-mers.
Segmentation-based methods divide a protein sequence
into p pieces and then count the number of each amino
acid appearing in each piece. So the resultant vector
dimension is 20*p. When p is equal to the length of
protein sequence, the protein sequence can be recon-
structed easily by filling amino acids in each segment
because there is only one amino acid in each segment.
When p is less than the length of protein sequence,
some sequence information is lost and the protein
sequence cannot be reconstructed exactly.
Inspired by the reversibility and low-dimension require-

ments of the evaluation model and the fact that protein
sequences are “sequences”, we propose a new vector
representation scheme by recording the positions (denoted
by Q). Q treats the positions of each type of amino acids
as a distribution and records the q quantile positions of
each type of amino acids. A toy example is illustrated in
Figure 1. The dimension of the resultant vectors of Q
method is 20*q, increasing linearly as q. Because position
information is complementary to the amino acid or k-mer
counts, super representation schemes, for example, QP
and KQP, can be constructed. For instance, QP divides a
protein sequence to p pieces and then counts the number
and records the q quantile positions of each type of amino
acids in each piece, resulting a 20*(1+q)*p vector. KQP
divides a protein sequence to p pieces and then counts the
number and records the q quantile positions of each k-
mer in each piece, resulting a 20k*(1+q)*p vector. A
detailed comparison of these representing methods is
summarized in Table 1. In summary, we find that QP vec-
tors are expected to extract more information with low
dimension and the follow-up experimental results suggest
the advantage of this method.

The converse problem of vector representation of protein
pairs
To predict PPIs, we need further encode protein pairs
into a single vector. The reversibility requirement also
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applies to the vector representation of protein pairs.
Here, symmetry is the first condition that must be satis-
fied. Protein-protein interaction is widely believed to be
symmetric interaction in biology [22], i.e., protein A
interacting with protein B has the same meaning with
the fact that protein B interacts protein A. For example,
protein-protein interaction networks are always treated
as undirected graphs [23] because proteins bind together
and have no explicit direction. In this sense protein-pro-
tein interactions are mutual, therefore the representation
of protein pairs should be naturally symmetric. Other-
wise the predicting result for AB may be inconsistent
with that of BA. Available symmetry solutions for pro-
tein pairs either work on vector level, e.g., abs(νA-νB)
[19], or work on kernel level, e.g., [15,24], but do not
consider the reversibility. Here we propose a new

solution based on the symmetry of sum and multiplica-
tion operations (denoted by SM). By applying arithmeti-
cal and geometric average operations additionally, a
second refined scheme is given (denoted by AG). For
SM, given the vector representations of Protein A (νA)
and Protein B (νB), we construct two new vectors: one is
νA+νB and the other is νA*νB, in which * means the cor-
responding elements multiplication. Then the two sym-
metric vectors are concatenated into one vector. For
AG, the arithmetical average of νA and νB (denoted by
νAM) and the geometric average of νA and νB (denoted
by νGM) are calculated. That is, the i-th dimensional ele-
ment of νAM and νGM are given by the following formu-
lations:

vi
AM =

1
2

(vi
A + vi

B) (4)

vi
GM =

√
vi

A ∗ vi
B

(5)

When νAM and νGM are calculated, the symmetric
representation of protein pair (A, B) will be the concate-
nation of νAM and νGM. AG has three important proper-
ties: 1) The resultant vector is symmetric regarding to
protein pairs (A, B) and (B, A) because of the commuta-
tive laws of addition and multiplication; 2)For each
dimension i, vi

A and vi
B can be reversely constructed

from vi
AM and vi

GM by solving Equations (4) and (5); 3)
Each dimension of the symmetric representation is of
the same scale as the original vectors νA and νB because
of the average operations, without artificial noise intro-
duced. These three properties facilitate the extraction of
information in the protein vectors and are beneficial to
learning the rules underlying PPIs (see results for more
detailed discussions).

Overview of performances of various methods
We first compared our new proposals to two published
methods (a k-mer-based method proposed by Shen et
al. [15] and a segmentation-based method proposed by
Luo et al. [21] on the model organisms Escherichia coli
and Saccharomyces cerevisiae with two types of negative
samples (Figure 2). The Receiver Operating Characteris-
tic (ROC) curves show that our approach outperforms
the other two available methods (Figure 3), suggesting
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5
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4
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Figure 1 A toy example to illustrate the encoding schemes for
protein sequences. Given a toy sequence of two letters, k-mer
based methods, denoted by K, count the number of each k-mer in
the sequence. Here k = 2. The counting process is represented as a
matrix in which the rows represent the first letter of 2-mers and the
columns represent the second letter of 2-mers. The dimension of
the resultant vector is 22 = 4. If k = 3, the dimension will be 23 = 8.
For real protein sequences, the dimension will be 203 = 8, 000.
Segmentation based methods, denoted by P, divide the sequence
evenly into p pieces first and then count the number of each letter
in each piece. Here p = 2. The dimension of the resultant vector is
2*2 = 4. If p = 3, the dimension will be 2*3 = 6. For real protein
sequence, the dimension will be 20*3 = 60. Quantile based
methods, denoted by Q, record the positions of q quantiles of
instead of the number of each letter. Here q = 2 and the first and
the median positions of each letter are recorded.

Table 1 Features of various representation schemes of protein sequence according to our evaluation model

K Q P QP KQP

f Counts Positions Counts Counts and positions Counts and positions

g Eulerian trails, reversible Simple filling, reversible Simple filling, reversible Simple filling, reversible Eulerian trails and filling, reversible

dim(V) 20k 20*q 20*p 20*(1+q)*p 20k*(1+q)*p

K: k-mer based methods; P: segmentation based methods; Q: our quantile-position based methods; QP: combination of Q and P; KQP: combination of K, Q and P.
f: mapping from sequences to vectors; g: mapping from vectors to sequences; dim(V): dimension of vector V.
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that it may extract more information which is essential
to PPIs. The advantage of our approach is due to both
the new vector representation of protein sequences and
the novel symmetric representation of protein pairs.
Strict evaluation of them is as follows.

Comparison of symmetric representation methods of
protein pairs
As we mentioned, the representation of protein pairs
should be symmetric. Otherwise the predicting result
for AB may be inconsistent with that of BA. Here we
compared four symmetric representing schemes. One
scheme is |νA-νB|, denoted by dist. It is on the vector
level and used in [19]. The other is proposed by Shen et

al. and is on the kernel level [15]. The conjoint triad
method proposed by Shen et al. is used for all the four
schemes as the vector representation of protein
sequences to guarantee the fairness of the comparison.
The conjoint triad method is a variant of k-mer method
that classifies twenty amino acids into seven families
[15]. These four solutions are denoted by AG-CTF (A:
arithmetical, G: geometric, CTF: conjoint triad features),
dist-CTF (dist: distance), sker-CTF (sker: S kernel, the
name of the kernel proposed by Shen et al), and SM-
CTF (S: sum, M: multiplication), respectively. The com-
parison is conducted on Escherichia coli and Saccharo-
myces cerevisiae data sets with two types of negative
samples. “Benchmark negatives” means that the negative
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Figure 2 The ROC curves of four available predicting methods on Escherichia coli and Saccharomyces cerevisiae datasets. A, ROC curves
on Escherichia coli data with negative samples constructed by sub-cellular information; B, ROC curves on Escherichia coli data with negative
samples sampled randomly from the complementary network; C, ROC curves on Saccharomyces cerevisiae data with negative samples
constructed by subcellular information; D, ROC curves on Saccharomyces cerevisiae data with negative samples sampled randomly from the
complementary network.
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samples are from the sub-cellular localization informa-
tion. “Random negatives” means that the negative sam-
ples are sampled randomly from the complementary
graph.
The comparison results are illustrated in Table 2. It

can be seen that the AUC (the area under the ROC
curve) value of dist-CTF is the least. This is because it

ignores much information contained in the original vec-
tors when constructing the symmetric vector representa-
tions. The other three solutions are comparable with a
little difference regarding to AUC values. On Escherichia
coli dataset with benchmark negative samples, sker-CTF
achieves the highest AUC (0.998). AG-CTF reaches
0.996 and SM-CTF reaches 0.988. On the other three
comparisons, AG-CTF always reaches the highest AUC
values. And AG-CTF is better than SM-CTF because it
solves the scale problem. Regarding the other indices, e.
g. accuracy, sensitivity, specificity, and precision, AG-
CTF also outperforms the other solutions. AG-CTF con-
siders adequately the converse problem and solves the
scale question, so its good performance is expected.
Because it is based on the vector level, it is easy to track
the physical meanings and the computation is efficient.
The extremely high AUC values on the benchmark
negative data sets are due to the bias incorporated dur-
ing the construction of negative samples, which has
been pointed out previously [25].

Comparison of vector representations of protein
sequences
The above comparison reveals that the symmetry solu-
tion based on the arithmetical and geometric averages
perform best. In this subsection, we choose to fix this
strategy in the comparison of various vector representa-
tion schemes of protein sequences. In this way we can
eliminate the differences introduced by different sym-
metric representations and make results rigorous. In
total, four vector representation schemes of protein
sequences are compared. They are: 1) conjoint triad fea-
tures proposed by Shen et al. [15], denoted by AG-CTF;
2) segmentation-based method with p = 5[21], denoted
by AG-P100; 3) position based method with q = 17,
denoted by AG-Q340; and 4) the combination of seg-
mentation and position with p = 3, q = 5, denoted by
AG-QP360. q is set to seventeen for AG-Q340 because
the resultant vectors have the almost same dimension

Table 2 The performance of four symmetric representing schemes for protein pairs

Organism Methods Benchmark negatives Random negatives

AUC Acc Sn Sp Pre AUC Acc Sn Sp Pre

E. coli AG-CTF 0.996 0.968 0.997 0.941 0.893 0.886 0.797 0.794 0.799 0.798

SM-CTF 0.988 0.948 0.985 0.929 0.879 0.876 0.788 0.785 0.789 0.789

Sker-CTF 0.998 0.947 0.995 0.940 0.839 0.880 0.795 0.791 0.798 0.797

Dist-CTF 0.955 0.892 0.842 0.899 0.786 0.769 0.702 0.704 0.699 0.701

S. cerevisiae AG-CTF 0.991 0.968 0.991 0.959 0.786 0.948 0.880 0.879 0.928 0.919

SM-CTF 0.990 0.964 0.984 0.958 0.766 0.939 0.868 0.837 0.899 0.893

Sker-CTF 0.985 0.909 0.978 0.900 0.564 0.929 0.867 0.818 0.919 0.911

Dist-CTF 0.946 0.891 0.826 0.900 0.523 0.849 0.788 0.764 0.799 0.792

Cutoff for each method was set according to the maximal F-measure statistic which is a community-standard procedure. Acc: accuracy; Sn: sensitivity; Sp:
Specificity; Pre: precision.

1
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4

Figure 3 Flow chart for applying SVMs to predict PPIs from
sequences. Four issues must be addressed. First, protein sequences
must be represented by vectors. Second, the vector representation
of protein pairs must be symmetric. Third, a set of non-interacting
protein pairs (negative PPIs) should be provided because SVMs are
supervised learning algorithms. Fourth, a proper kernel will facilitate
the nonlinear prediction. The focus of this paper is on the first and
second issue. Community standard procedures are adopted to
address the third and fourth issues in this paper.
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compared to AG-CTF and AG-QP360. p = 3 and q = 5
for AG-QP360 is because of the same reason. We
choose p = 5 for AG-P100 because it is a representative
of this class of methods and reaches the best AUC value
in cross-validation.
The comparison is illustrated in Table 3. On the

benchmark negative data sets, these four representations
achieve similar AUC values on both Escherichia coli and
Saccharomyces cerevisiae data sets. On the Escherichia
coli benchmark negative data set, AUC of AG-CTF
reaches the highest 0.996. AG-QP360 and AG-P100
reach 0.994, which are a little bit smaller. AG-Q340 has
the least AUC 0.989. On the yeast benchmark negative
data set, AG-QP360 has the highest AUC 0.993 while
AG-CTF, AG-P100, and AG-Q340 have AUCs 0.991,
0.991, and 0.989, respectively. Regarding the other
indices including accuracy, sensitivity, specificity, and
precision, AG-QP360 outperforms the other methods.
Because of the bias in the benchmark negative data

sets, each method can achieve very high AUC values but
may limit its discriminating capacity. The negative sam-
ples sampled randomly from the complementary graphs
are assumed to be unbiased so they may provide more
discrimination power [25]. On the Escherichia coli ran-
dom negative data set, AG-QP360 gets the highest
AUC, 0.899, which is higher than that of AGP100 by
one percent. AG-CTF has the third highest AUC (0.886)
and AUC of AG-Q340 is the least (0.854). AG-QP360
also has the highest accuracy, sensitivity, specificity, and
precision. On the Saccharomyces cerevisiae random
negative data set, AG-QP360 still shows outperforming
performances.
We also compared the performances of AG-QP360

and AG-CTF on the third type of negative samples to
highlight the benefits of linearly scalable vector repre-
sentations including segmentation based, position-based,
and their combination (Table 4). Given a true protein
sequence, uShuffle can generate artificial protein
sequences that have the same composition of k-mers

with the true sequence [26]. These artificial proteins
have been used as negative samples in the previous stu-
dies to predict PPIs [27]. Here we construct three nega-
tive datasets of this type by reserving the composition of
1-mers, 2-mers and 3-mers, respectively. AG-QP360
performs well on all the three data sets but AG-CTF
only performs well on the 1-mers and 2-mers datasets.
On the 3-mers negative data set, AG-CTF loses its dis-
criminative capacity because the conjoint triad features
are in nature based on 3-mers. To get the discriminative
power, k must increase to 4 or more but the vector
dimensions will increase exponentially, aggravating
greatly the computational burden and the dimensionality
curse. Compared with that, the linearly scalable vector
representations can handle this issue easily.
Comparisons on human PPIs data were also imple-

mented strictly (see SI Table 1, 2 and 3). The results on
random negative samples and three types of shuffled
negative samples all support the superiority of the new
vector representations for both protein sequences and
protein pairs.

Discussion and conclusion
Predicting PPIs only from the sequence information is
an important and challenging problem in the post-geno-
mic era. We note that most current computational
methods are trying to encode protein sequences with
various lengths into vector with the same dimension. So
the first inevitable question for successful prediction is
how to encode protein sequences effectively and effi-
ciently in vector spaces. Previous studies propose var-
ious encoding methods but seldom consider the
converse problem. In this study, we propose an evalua-
tion model and analyze the available k-mer based meth-
ods and segmentation based methods by investigating
the converse problem, and suggest that when k or p is
large enough, a protein sequence corresponds to a
unique vector. But the dimension of the resultant vec-
tors increases exponentially for k-mers based methods

Table 3 The performance of four vector representing schemes for protein sequences

Organism Methods Benchmark negatives Random negatives

AUC Acc Sn Sp Pre AUC Acc Sn Sp Pre

E. coli AG-QP360 0.994 0.982 0.996 0.982 0.894 0.899 0.811 0.821 0.802 0.804

AG-CTF 0.996 0.968 0.987 0.940 0.889 0.886 0.797 0.794 0.799 0.798

AG-P100 0.994 0.965 0.989 0.979 0.889 0.889 0.799 0.798 0.799 0.799

AG-Q340 0.989 0.964 0.987 0.959 0.807 0.854 0.771 0.743 0.789 0.787

S. cerevisiae AG-QP360 0.993 0.968 0.998 0.969 0.786 0.960 0.902 0.887 0.929 0.917

AG-CTF 0.991 0.964 0.986 0.960 0.767 0.948 0.880 0.879 0.927 0.909

AG-P100 0.991 0.963 0.985 0.959 0.765 0.947 0.849 0.798 0.899 0.889

AG-Q340 0.989 0.945 0.982 0.939 0.684 0.902 0.844 0.788 0.898 0.877

Cutoff for each method was set according to the maximal F-measure statistic. Acc: accuracy; Sn: sensitivity; Sp: Specificity; Pre: precision.
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and linearly for segmentation based methods. And k-
mer based methods emphasize extracting the local infor-
mation while segmentation based methods emphasize
the global information.
Viewing the protein sequences as distributions of

amino acids, we propose a new dimension-linearly-
increasing vector representation scheme for protein
sequences by recording the positions of q quantiles of
each type of amino acids. It can serve as an independent
encoding method and can also combine with segmenta-
tion based methods to form super methods, whose
dimension increases still linearly with the scaling para-
meters p and q. Experiments on Escherichia coli and
Saccharomyces cerevisiae datasets with various types of
negative samples suggest the outperforming power of
the proposed super methods. Comparisons on the artifi-
cial negative samples further highlight the superiority of
linearly scalable methods.
Applying the reversibility requirement on the sym-

metric vector representation of protein pairs results in a
simple and reversible solution that is comparable to or
even outperforms the available complicated kernels.
Because it is based on the vector level, it is separated
from the kernels and facilitates designing specific ker-
nels to catch the nature of PPIs in the future.
Considering adequately the converse problem and

seeking optimal representations has both theoretical and
computational significance. It may theoretically point
out the advantages and drawbacks of available methods
and provide insights into how to improve the current
methods. Furthermore, we only investigate the diction-
ary based encoding methods in this study. Physiochem-
ical properties based methods are not investigated but
they are ready to be incorporated into our framework as
the additional information other than sequence. We
think the information holds their potential to unravel
the physical and chemical principles underlying the
interactions.
Obviously, there are a lot of other unsolved questions

in predicting computationally PPIs. For example, pro-
teins interact with each other through certain domains
or building blocks rather than the global sequences.
Which parts are essential to protein interactions and

how to computationally identify them need more deep
investigations. The second limitation of sequence-based
predictions is how to predict remote PPIs across organ-
isms. Currently the predicting accuracy of remote PPIs
is much lower than the intra-organism predictions. We
note that the current domain databases may provide a
few clues. However, their bias and incompleteness, espe-
cially information loss, should also be considered ade-
quately. Another question is that the gold standard
negative samples of PPIs are missing. Various methods
have been proposed to construct the negative samples
to highlight the patterns embedding in the positive data
sets. But artificial biases are also introduced. How to
construct unbiased negative samples is a big issue and
still in argument currently.

Methods
The benchmark data and predicting methods
Numerically, we evaluate the vector encoding methods
and our improvements with support vector machines
(SVM) on Escherichia coli and Saccharomyces cerevisiae
PPIs datasets. SVMs are one type of the state-of-the-art
supervised machine learning methods and have been
used extensively in various disciplines including bioin-
formatics. Here we use SVMs to evaluate various repre-
sentation schemes. Details of SVMs can be found in refs
[28]. Other learning methods are also qualified to do
evaluation but the selection of learning methods is not
the focus of this paper. Four general issues must be
addressed when applying SVMs to predicting PPIs (Fig-
ure 3). First, protein sequences must be represented by
vectors. Second, the vector representation of protein
pairs must be symmetric. Third, gold-standard negative
data (a set of non-interaction protein pairs) should be
provided because SVMs are supervised learning algo-
rithms. Fourth, a proper kernel will facilitate the predic-
tion greatly. Since the focus of this paper is only related
to the first and the second issues, community standard
solutions are adopted to address the third and fourth
issues in this paper. Specifically, we use three types of
negative samples which have been widely used in the
previous studies for predicting PPIs. The first type is
constructed manually based on the sub-cellular localiza-
tion of proteins, which assumes that proteins with dif-
ferent sub-cellular localizations are not prone to
interact. The second type is sampled randomly from the
complementary graph of the PPIs network, which
assumes the sparseness of the PPIs network. The third
type is constructed by disturbing randomly the amino
acid sequences of interacting protein pairs while conser-
ving the composition of amino acids or k-mers by uSh-
uffle [26]. Yu et al. propose a fourth method for
constructing the negative PPI samples by imposing the
degree distribution of the positive PPI set to the

Table 4 AUC values of AG-QP360 and AG-CTF on the
artificial negative data sets

Organism Method 1-mer 2-mer 3-mer

E. coli AG-QP360 0.966 0.932 0.914

AG-CTF 0.957 0.936 -

S. cerevisiae AG-QP360 0.969 0.931 0.918

AG-CTF 0.956 0.936 -

-: The method has no power to discriminate positive PPIs from this type of
negative PPIs.
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negative PPIs [29]. They propose an excellent question
what roles the special network structures of PPIs net-
works play in PPIs prediction. However, we argue that
the requirement of the same degree distribution of the
positive and negative PPI sets is not reasonable (the
complementary graph of a PPIs network cannot be of
the same degree distribution as the PPIs network). So
this type of negative PPIs was not suitable for evaluating
the performances of PPIs prediction from sequences.
Despite that the PPIs networks are assumed to be
sparse, we select randomly the same number of the
negative samples to do the evaluation. If more negative
samples are included, the unknown true PPIs may also
be included as negative samples. The positive and the
first type of negative data of PPIs are from [19] that
were manually curated for quality. We use soft-margin
SVM to resolve the remaining errors in the data. All the
evaluations are conducted by five-fold cross-validations.
Gaussian kernels are adopted for the fourth issue and
the parameters are tuned by a grid search.
The protein sequences are from the RefSeq database of

NCBI. PPIs involving proteins whose sequences are not
available are filtered. Finally, 6,962 positive interactions
are included in the cross-validation experiments for
Escherichia coli and 6,635 positive interactions are
included in the cross-validation experiments for Sacchar-
omyces cerevisiae. The numbers of negative samples are
the same as the number of positive samples for balance.
Human PPIs were downloaded from the Human Protein
Reference Database (HPRD) on Dec. 21st, 2009 [30].
Protein sequences are converted into vectors by four

schemes (CTF, P100, Q340, and QP360). CTF classifies
the twenty amino acids into seven classes and then
applies k-mer based method with k = 3. The details can
be found in [15]. P100 divides a protein sequence into
five pieces first and then counts the number of each
type of amino acid. Q340 records seventeen quantile
positions for each type of amino acid. QP360 first
divides a protein sequence into three pieces, then counts
the number of each type of amino acid and records five
quantile positions for each type of amino acid in each
piece. Each protein sequence is normalized according to
its length. That is, the elements of the resultant vector
are divided by the length of the protein sequence. The
symmetric representations of protein pairs include four
methods (dist, Sker, SM and AG). Given νA and νB, dist
generates the symmetric vector by abs (νA-νB). Sker cal-
culates the kernel matrix according to the S kernel
defined in [15]. SM creates the symmetric vector by
concatenating νA+νB and νA*νB in which * means the
multiplication of the corresponding elements. AG gets
the symmetric representation according to (4) and (5).
libsvm 2.88 [31] is used to implement the algorithms of
support vector machines on a PC machine with Intel

Core 2 Due CPU 2.83 Hz. The Gaussian kernel is
applied. The parameters are tuned by a grid search
method and the optimal ones are (C = 10, g = 0.025) for
CTF methods and (C = 10, g = 0.0125) for other meth-
ods. All the evaluations are conducted in five-fold cross-
validations.
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