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Warming and grazing affect soil labile carbon and nitrogen
pools differently in an alpine meadow of the Qinghai–Tibet
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Abstract
Purpose Small but highly bioactive labile carbon (C) and
nitrogen (N) pools are of great importance in controlling
terrestrial C and N fluxes, whilst long-term C and N storage is
determined by less labile but relatively large sizes of C and N
pools. Little information is available about the effects of
global warming and grazing on different forms of C and N
pools in the Qinghai–Tibet Plateau of China. The aim of this
study was to investigate the effects of warming and grazing on
the sizes of different soil labile C and N pools and N
transformation in this region.
Materials and methods A free-air temperature enhancement
system in a controlled warming–grazing experiment had

been implemented since May 2006. Infrared heaters were
used to manipulate temperature, and a moderate grazing
intensity was simulated by Tibetan sheep. After 3 years’
warming, soil samples were taken from the four treatment
plots: no warming with no grazing; no warming with
grazing; warming with no grazing; and warming with
grazing. Concentrations of inorganic N in the 40–cm soil
profiles were measured by a flow injection analyser.
Microbial biomass C (MBC) and microbial biomass N
(MBN) were measured by the fumigation–extraction method,
and soluble organic C (SOC) and soluble organic N (SON)
were determined by high-temperature catalytic oxidation.
Total N (TN), C isotope composition (δ13C) and N isotope
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composition (δ15N) were determined using an isotope
ratio mass spectrometer. Net N transformation under low
temperature was studied in a laboratory incubation
experiment.
Results and discussion Warming and grazing treatments
affected soil C and N pools differently, and these effects
varied with soil depth. Warming significantly increased
TN, MBC, MBN, and SON and decreased δ13C at the
10–20 and 20–30 cm soil depths, whilst grazing generally
decreased SON at the 10–20 and 20–30 cm, and MBC at
20–30 cm. At the 0–10 cm depth, neither warming nor
grazing alone affects these soil parameters significantly,
indicating that there could be considerable perturbation on
the soil surface. However, grazing alone increased NO3

−–
N, total inorganic N, SOC and δ15N at the 0–10 cm depth.
Incubated at 4°C, warming (particularly with grazing) led to
net immobilization of N, but no-warming treatments led
to net N mineralization, whilst nitrification was strong
across all these treatments. Correlations between MBC
and SOC, and TN and MBN or SON were positive.
However, SON was less well correlated with TN and
MBN compared with the highly positive correlations
between SOC and MBC.
Conclusions It is clearly demonstrated that warming and
grazing affected labile C and N pools significantly, but
differently after 3 years’ treatments: Warming tended to
enlarge labile C and N pools through increased litter inputs,
whilst grazing tended to increase inorganic N pools,
decrease SON and accelerate N cycling. Grazing might
modify the mode that warming affected soil C and N pools
through its strong impacts on microbial processes and N
cycling. These results suggested that interactive effects of
warming and grazing on C and N pools might have
significant implications for the long-term C and N storage
and productivity of alpine meadow ecosystem in the
Qinghai–Tibet Plateau of China.

Keywords Alpine meadow. Carbon cycling . Grazing .

Nitrogen cycling .Warming

1 Introduction

Labile carbon (C) and nitrogen (N) pools, including
inorganic N, microbial biomass C and N (MBC and
MBN), and soluble organic C and N (SOC and SON), all
play vital roles in soil C and N cycling, structure and
functioning of ecosystems through their impacts on
turnover and supply of nutrients to vegetation, and can be
vulnerable to climate change and disturbance (Pastor and
Post 1986; Zak et al. 1993; Hu et al. 1997; Pu et al. 2001;
Chen et al. 2002; Blumfield and Xu 2003; Burton et al.
2007). Terrestrial C and N budgets are largely controlled by

the small but highly bioactive labile pools of these elements
in soils (Mathers et al. 2003; Chen and Xu 2005; Belay-
Tedla et al. 2009; Xu et al. 2009). Being a direct reservoir
of readily available substrates and nutrient, labile C and N
pools are especially important and may exert considerable
control on the productivity, community structure and
functioning of ecosystems through their impacts on
turnover and supply of nutrients to vegetation (Pastor and
Post 1986; Chen et al. 2003; Xu and Chen 2006; Burton et
al. 2010). Global warming could stimulate C sequestrations
in soil through enhanced primary production, but there is
still uncertainty due to the potential increase of soil
respiration (Rustad et al. 2001). Relative small changes in
the sizes and distribution of soil C and N pools may
therefore induce substantial effects on atmospheric green-
house gas concentrations and on global C and N cycling at
large (Belay-Tedla et al. 2009; Xu and Chen 2006). Such
alterations in labile and less labile C and N pools may not
only lead to new dynamic processes in the short term but
can also influence the long-term terrestrial C and N storage
and consequently feedback to the atmosphere (Xu et al.
2008, 2009; Burton et al. 2010; Jiang et al. 2010; Xing et
al. 2010). Studies have also demonstrated that labile C and
N pools in some situations could be sensitive to alterations
in soil moisture, temperature and plant community structure
resulting from climate change (Zak et al. 1993; Xu et al.
2009). Hence, measurements of the labile C and N pools
may provide insights into the early indications of impacts of
climate change on soil C and N dynamics and the
consequent ecosystem functioning (Xu et al. 2008, 2009;
Ge et al. 2010).

Inconsistent results on the responses of soil C and N
dynamics to climate change have been observed so far
(Rustad et al. 2001; Xu et al. 2009; Liu et al. 2010).
Warming enhanced plant productivity (Chapin et al. 1995;
Hartley et al. 1999; Jonasson et al. 1999) and litter mass
losses (Luo et al. 2010), and thus a higher flux of carbon
dioxide into the atmosphere (Meentemeyer 1978; Berg et
al. 1993; Shaw and Harte 2001; Liski et al. 2003). These
effects are reported most likely to take place in cold biomes
(high-latitude and high-altitude sites) because the greatest
warming is predicted to occur there, and decomposition in
these regions is strongly temperature-limited (Hobbie and
Chapin 1998; Robinson 2002; Aerts 2006). Grazing could
affect the nutrient cycling mainly through providing plants
with urine and faecal material and also by influencing litter
mass losses (Hobbs et al. 1991; Bardgett et al. 2001;
Olofsson et al. 2001), and its role depended on plant and
litter quality. However, there is a scarcity of information
about labile C and N pools and their coupling relations
under future warming and grazing conditions in the
Qinghai–Tibet Plateau of China and even in the world.
Effects of warming and grazing on soil labile C and N pools
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may occur in four ways: (1) by altering rates of litter mass
loss directly at short timescales through changes in soil
temperature and moisture (Kalbitz et al. 2000; Aerts
2006; Luo et al. 2010); (2) by decreasing litter mass with
the increase in grazing intensity at short timescales
(Shariff et al. 1994; Olofsson et al. 2001); (3) by changing
plant litter quantity and quality indirectly at longer
timescales (Aerts 2006); and (4) by changing indirectly
the species composition and structure of the decomposer
and detritivore communities in the long term (Kalbitz et al.
2000; Aerts 2006).

Global surface temperature is predicted to increase by
1.1°C to 6.4°C by the end of this century (IPCC 2007).
The Qinghai–Tibet alpine meadow, unique among all
ecosystems, is a sensitive region to global climate change
(Thompson et al. 1993, 2000; Wang and French 1994).
Moreover, a much greater than average increase in surface
temperature was predicted to occur in this region in the
future (Giorgi et al. 2001). Grazing is the main land use
mode; there are about 13.3 million domestic yaks and 50
million sheep on the Qinghai–Tibet plateau, and grazing
pressure will increase due to increasing population (Gerald
et al. 2003; Yao et al. 2006). A number of simulated
experiments have been carried out to study the impacts of
global warming and grazing on terrestrial ecosystems all
over the world. However, this is the first time that infrared
heaters were used in the Qinghai–Tibet Plateau to simulate
relevant ecosystem responses.

We experimentally manipulated temperature by actively
warming plots using infrared heaters in a free-air temperature
enhancement (FATE) system since May 2006, as described by
Kimball et al. (2008), and applied a moderate grazing
treatment to an alpine meadow on the Qinghai–Tibet
Plateau. Interaction between warming and grazing on
different soil C and N pools was studied at four soil
depths: 0–10, 10–20, 20–30 and 30–40 cm. We hypothesized
that warming would increase the sizes of labile C pools by
increasing plant biomass (Luo et al. 2009; Hu et al. 2010),
whilst grazing would alter the sizes of N pools and N
transformation and modify the responses of soil C and N
pools to warming. These effects could be different among the
four soil depths.

The objectives of this study were to investigate
through a controlled warming–grazing experiment: (1)
the effects of warming and grazing on soil temperature
and moisture, total N, C isotope composition (δ13C) and
N isotope composition (δ15N) in the top 40 cm of the soil
profile; (2) the effects of warming and grazing on soil
inorganic N, SOC and SON, MBC and MBN, and N
transformation under low temperature (4°C); and (3) the
interactions between warming and grazing on these different
forms of C and N pools and the relationships among these C
and N pools.

2 Materials and methods

2.1 Experimental site

The experimental site and design were described by
Kimball et al. (2008) and Luo et al. (2009, 2010). It is
located at the Haibei Alpine Meadow Ecosystem Research
Station (HBAMERS), a facility run by the Northwest
Institute of Plateau Biology, Chinese Academy of Sciences.
The station is situated at latitude 37°37′ N, longitude 101°
12′ E, and the mean elevation of the valley bottom is
3,200 m. Lying in a large valley surrounded by the Qilian
Mountains on the northeast of the Qinghai–Tibetan Plateau,
the station experiences a typical plateau continental climate
which is dominated by the southeast monsoon in summer,
from May to September, and high pressure from Siberia in
winter. Summers are short and cool and winters are long
and severely cold. The mean annual temperature is −2°C,
whilst the mean annual precipitation is 500 mm, over 80%
of which falls during the summer monsoon season.

The infrared heating system, herein called a free-air
temperature enhancement (FATE), has been set up since
May 2006. The set point differences between the heated
and corresponding reference plots were 1.2°C during
daytime and 1.7°C at night in summer, which fell within
the limits of the predicted temperature increases for this
century (1.5–5°C; Houghton et al. 2001). The soil
temperature at depths of 5, 10 and 20 cm were measured
automatically using type K thermocouples (Campbell
Scientific, Logan, Utah, US.A), which were connected to
a CR1000 data logger. Meanwhile, the soil temperatures at
the 0– and 40–cm depths were manually monitored using
mercury-in-glass thermometers. Warming significantly
increased soil temperatures for the 0–40 cm soil depths
in 2006, 2007 and 2008. Mean seasonal soil temperature
increases in the warmed plots above the reference plots
were 0.8–1.3°C, 1.4–1.5°C, 1.2–1.4°C, 1.1–1.2°C and 0.5–
0.7°C at the 0-, 5-, 10-, 20 and at 40-cm soil depths in 2006
and 2007, respectively. More data can be found in our
published results (Luo et al. 2009, 2010; Hu et al. 2010).

A two factorial design (warming and grazing) was used
with four replicates for each of four treatments, i.e. no
warming with no grazing (NWNG); no warming with grazing
(NWG); warming with no grazing (WNG); and warming with
grazing (WG). In total, 16 circular plots of 3–m diameter were
used in a randomized block design in the field.

Initially, one adult Tibetan domestic sheep (Ovis aries)
was fenced in the grazing plots on the morning of 15
August 2006 for approximately 2 h. The canopy height was
8–9 and 4–5 cm before and after grazing, respectively. Two
sheep were fenced for approximately 1 h in the grazing
plots on the mornings of 12 July, 3 August and 12
September 2007, and 8 July and 20 August in 2008. The

J Soils Sediments (2011) 11:903–914 905



canopy height of the vegetation was measured at 50 points
within the plots before and after grazing, and the sheep
were removed from the grazing plots when the canopy
height was reduced to approximately half of the initial
height, which generally corresponded to a moderate
stocking rate in the region. All experimental sheep were
fenced into three additional 5×5-m fenced plots for a day
before beginning the grazing experiment to help them adapt
to small plots.

2.2 Soil sampling

Soil samples from each plot were collected on 2 August
2009 using a drill. Five soil cores were randomly collected
within each plot and bulked as a single sample. As the
impact of infrared radiation on soil temperature reached the
depth of 40 cm (Luo et al. 2010), soil samples from four
soil depths—0–10, 10–20, 20–30 and 30–40 cm—were
taken. All soil samples were sent to the laboratory and
sieved through a 2-mm screen and stored in a refrigerator at
4°C prior to analyses. Soil subsamples were extracted
within 24 h for NH4

+–N and NO3
−–N analysis.

2.3 Soil analysis

Soil pH was determined in 1:5 (v/v) soil/water extracts
using a combination glass electrode, and soil gravimetric
moisture was determined by drying at 105°C for 24 h. Soil
NH4

+–N and NO3
−–N were determined in 2 M KCl extracts

by LACHAT Quickchem Automated Ion Analyzer (Quick-
Chem Method 10-107-06-04-D for NH4

+–N and Quick-
Chem Method 12-107-04-1-B for NO3

−–N). In addition, a
low-temperature incubation experiment was carried out in
the laboratory as the 0–10 cm soil samples were incubated
for 3 months at 4°C, which was close to in situ mean annual
temperature of this region. N transformation during the
3 months was analysed by calculating the difference of
inorganic N concentrations before and after this period. Net
ammonification, net nitrification and net N mineralization
were calculated as the differences of soil NH4

+–N, NO3
−–N

and total inorganic N before and after this period.
Soil total N (TN), δ13C and δ15N were determined using

an isotope ratio mass spectrometer with a Eurovector
Elemental Analyzer (Isoprime-EuroEA 3000, Milan, Italy).

Soil MBC andMBNwere measured using the fumigation–
extraction method described by Vance et al. (1987) and
Brookes et al. (1985). In brief, fumigated and non-
fumigated soils (4-g dry weight equivalent) were extracted
with 20 ml of 0.5 M K2SO4 (soil/extractant ratio 1:5). The
fumigation lasted for 16 h. Samples were shaken for 1 h
and filtered through a Whatman 42 filter paper. Soluble
organic C and total soluble N (TSN) in the fumigated and
non-fumigated samples were determined using a SHI-

MADZU TOC-VCPH/CPN Analyzer. NH4
+–N and NO3

−–N
concentrations in 0.5 M K2SO4 extracts were determined
by LACHAT Quickchem Automated Ion Analyzer, whilst
SON was calculated as the difference between TSN and
soil inorganic N (SIN). MBC and MBN were calculated
using a conversion factor for C (Ec) of 2.64 (Vance et al.
1987) and for N (En) of 2.22 (Brookes et al. 1985).

2.4 Statistical analysis

Statistical significances of the effects of warming and
grazing on soil moisture at different soil depths, inorganic
N concentrations, TN, δ13C, δ15N, MBC, MBN, SOC and
SON were determined separately by analysis of variance
(ANOVA) using Statistix for Windows, version 8.0 (Analytical
Software, Tallahassee, FL, USA), with warming and grazing as
the main factors. Least significance difference was used to
separate the means when differences were significant.
Significance was assumed at the P=0.10 level as there might
be unavoidable disturbance in the field. Simple correlations
between all these variables were performed.

3 Results

3.1 Soil temperature, moisture, TN and C and N isotope
compositions

Warming significantly increased soil temperature at the
0–40 cm depth during the growing season of 2009 (Fig.1a).
No interaction between warming and grazing was found on
soil temperature, although NWG also increased it by
decreasing vegetation canopy height, probably through
increased solar radiation. WG caused the largest increase
in soil temperature compared with other treatments.

Warming significantly decreased soil moisture at all
depths (F=59.59, P<0.01; Table 1 and Fig. 1b). No direct
influence of grazing and interaction between warming and
grazing on soil moisture was found. However, the inter-
actions between warming and depth; grazing and depth;
and warming, grazing and depth on soil moisture were all
significant (P<0.001, P<0.10 and P<0.05, respectively;
see Table 1).

Generally, the effect of warming on TN varied with
soil depths (Table 2). Warming significantly increased TN
at the 10–20 cm (F=21.9, P=0.018) and 20–30 cm (F=
7.77, P=0.069) depths (see Table 2 and Electronic
supplementary material (ESM) Tables S1 and S3), but
the interaction between warming and grazing was not
significant. At 0–10 cm, however, the effects of warming
and grazing were not significant; WNG decreased TN by
4.6% compared with NWNG, whilst WG increased them by
8.9% compared with NWG.
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There was a significant effect of warming in decreasing δ13C
at the 10–20 cm (F=9.99, P=0.051) and the 20–30 cm

(F=9.35, P=0.055) depths (see Table 2 and ESM Table S3).
Warming did not affect δ15N significantly. However, at 0–
10 cm, there was a significant increase of δ15N in the grazing
plot (F=6.5, P=0.084); NWG increased it by 18.6%
compared with NWNG (see Table 2 and ESM Table S3).
The interactions between warming and grazing on δ15N were
not significant at the 0–10 cm (F=5.54, P=0.100) and the
10–20 cm (F=4.15, P=0.134) depths (see ESM Table S3).

3.2 NH4
+–N, NO3

−–N and total inorganic N

Generally, soil inorganic N concentrations were more
affected by grazing than by warming (Fig. 2a, b). No
significant effect of warming on NH4

+–N, NO3
−–N and

SIN concentrations was found, but soil depth had a
significant effect. Concentration of NH4

+–N among all soil
depths ranged from 16.61 to 25.52 mg kg−1, whilst that of
NO3

−–N ranged from 1.43 to 43.17 mg kg−1.
Grazing posed a significant influence in increasing

NO3
−–N overall (F=4.88, P=0.047) at the 0–10 cm (F=

5.69, P=0.097), the 10–20 cm (F=6.99, P=0.078) and the
20–30 cm (F=7.40, P=0.073) depths, respectively, as well as
increasing SIN overall (F=5.07, P=0.044; see Fig. 2b, c).
Specifically, at 0–10 cm, NWG increased NO3

−–N by over
twofold compared with NWNG, whilst WG drastically
increased NO3

−–N by over sixfold compared with WNG.
As well, NWG increased SIN by 21.3% compared with
NWNG, whilst WG increased it by 145% compared with
WNG at 0–10 cm. Warming tended to decrease NH4

+–N,
NO3

−–N and SIN, whilst grazing tended to increase them;
however, WG caused the largest increases in NO3

−–N and
SIN (see Fig. 2b, c).

3.3 MBC, MBN, SOC and SON

The effects of warming on MBC and MBN varied with soil
depth. Warming significantly increased MBC at the 10–
20 cm (F=11.1, P=0.045) and the 20–30 cm (F=8.22,

Table 1 ANOVA for moisture content and inorganic N in the 40-cm soil profile under different warming and grazing regimes

Factors Moisture (%) NH4
+–N (mg kg−1) NO3

−–N (mg kg−1) Inorganic N (mg kg−1)

df F P df F P df F P df F P

Warming 1 59.59 <0.001*** 1 0.10 0.754 1 2.12 0.171 1 2.58 0.135

Grazing 1 0.67 0.427 1 0.02 0.898 1 4.88 0.047** 1 5.07 0.044**

Warming × grazing 1 0.24 0.630 1 1.94 0.189 1 1.91 0.192 1 3.41 0.089*

Depth 3 77.30 <0.001*** 3 27.99 <0.001*** 3 7.81 <0.001*** 3 14.93 <0.001***

Warming × depth 3 9.21 <0.001*** 3 1.22 0.316 3 2.41 0.083* 3 1.77 0.170

Grazing × depth 3 2.44 0.081* 3 0.05 0.983 3 5.05 0.005*** 3 4.78 0.007***

Warming × grazing × depth 3 3.02 0.042** 3 1.00 0.404 3 1.81 0.163 3 2.28 0.096*

*P<0.10, **P<0.05, ***P<0.01
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Fig. 1 Soil temperature (°C) of growing season (a) and gravimetric
moisture content (%) (b) at different depths under different warming and
grazing regimes in 2009. NWNG no warming with no grazing, NWG no
warming with grazing,WNG warming with no grazing,WG warming with
grazing. Different letters mean significant differences between treatments
at P<0.05 for each soil depth. Mean ± SE is shown in the figure
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P=0.024) depths (ESM Table S4). Grazing decreased
MBC significantly at 20–30 cm (F=7.94, P=0.067). No
significant interactions between warming and grazing on
MBC were found among any of the depths. Although the
effect was not robust, warming increased MBN at the 10–
20 cm (F=5.88, P=0.094) depth (see ESM Table S4). No
significant effects of warming and grazing or interaction
between them on MBN were found. However, at 0–10 cm,
WG tended to increase MBN by 15.3%, 11.7% and 27.0%,
respectively, compared with NWNG, NWG and WNG,
respectively.

Warming and grazing affected SOC and SON differently
and inconsistently among soil depths. At 0–10 cm, grazing
significantly increased SOC (F=6.56, P=0.083), but there
was no interaction between warming and grazing (F=2.75,
P=0.196; see ESM Table S4). At 10–20 cm, the effects of
warming (F=12.11, P=0.040) in increasing SON and the
effects of grazing (F=10.7, P=0.047) in decreasing SON
were both significant (see ESM Table S4). At the 20–30 cm
depth, grazing also significantly decreased SON (F=292,
P=0.013; see ESM Table S4).

3.4 N transformation under low temperature

After 3 months’ incubation, the composition of inorganic N
had changed greatly (see Fig. 2d) as low concentrations of
NH4

+–N and abundance in NO3
−–N were observed, which

was opposite to the state before incubation. The 4°C
incubation experiment had shown that warming (particularly
with grazing) led to net immobilization of N, but no-
warming treatments led to net N mineralization (see Fig. 2d).
However, WG caused the largest net N immobilization,
and nitrification was strong across all these different
treatments (see Fig. 2d).

3.5 Relationships among the soil C and N pools

There were positive correlations between TN and MBN
(R2=0.76, P<0.001) and between TN and SON (R2=0.24,
P<0.001; Fig. 3a). Positive correlation was also found
between MBC and SOC (R2=0.53, P<0.001) and between
MBN and SON (R2=0.21, P<0.001; see Fig. 3c, d).
However, SON was less well correlated with TN and

Table 2 Mean values for TN, C isotope composition (δ13C), N isotope composition (δ15N), MBC, MBN, SOC and SON in the 40-cm soil profile
under different warming and grazing regimes (standard errors are shown in parentheses)

Treatments TN (%) δ13C (‰) δ15N (‰) MBC
(mg kg−1)

MBN
(mg kg−1)

SOC
(mg kg−1)

SON
(mg kg−1)

0–10 cm

NWNG 0.693 (0.04) −26.1 (0.28) 3.35 (0.15) B 2245 (322) 274 (60) 573 (74) b 26.2 (6.4)

NWG 0.690 (0.03) −26.0 (0.19) 3.98 (0.13) A 2101 (133) 283 (57) 607 (42) ab 24.4 (3.1)

WNG 0.661 (0.03) −25.9 (0.23) 3.50 (0.21) B 2211 (369) 249 (41) 560 (53) b 27.3 (3.6)

WG 0.755 (0.04) −26.2 (0.14) 3.53 (0.21) AB 2407 (244) 316 (33) 718 (113) a 37.6 (11.3)

10–20 cm

NWNG 0.449 (0.01) B −23.9 (0.25) A 4.23 (0.16) 1098 (155) b 131 (18) 465 (61) 27.9 (2.8)

NWG 0.449 (0.01) B −24.0 (0.14) AB 4.45 (0.04) 1049 (132) b 111 (12) 427 (22) 25.2 (2.3)

WNG 0.470 (0.02) AB −24.2 (0.20) AB 4.29 (0.09) 1251 (116) ab 154 (16) 433 (20) 28.2 (3.4)

WG 0.499 (0.02) A −24.7 (0.26) B 4.23 (0.15) 1373 (139) a 173 (35) 472 (37) 28.0 (4.3)

20–30 cm

NWNG 0.375 (0.02) ab −22.7 (0.30) AB 4.75 (0.09) ab 904 (77) AB 119 (16) 381 (31) 24.0 (1.7) A

NWG 0.347 (0.01) b −22.4 (0.24) A 4.95 (0.23) a 783 (71) B 88.9 (15) 360 (29) 22.5 (1.6) AB

WNG 0.385 (0.02) a −22.9 (0.32) AB 4.30 (0.30) b 1012 (137) A 117 (18) 369 (19) 23.7 (2.7) AB

WG 0.390 (0.02) a −23.1 (0.12) B 4.63 (0.10) ab 950 (134) AB 115 (10) 384 (38) 21.6 (2.3) B

30–40 cm

NWNG 0.301 (0.01) −20.8 (0.36) 4.83 (0.17) 572 (45) B 73.6 (10) 320 (26) 16.8 (1.1)

NWG 0.299 (0.02) −20.7 (0.39) 4.69 (0.17) 547 (49) B 67.4 (16) 312 (26) 19.4 (2.4)

WNG 0.323 (0.03) −21.4 (0.56) 4.59 (0.26) 720 (94) A 81.1 (19) 319 (37) 19.3 (2.3)

WG 0.303 (0.02) −20.8 (1.00) 4.72 (0.11) 613 (82) AB 68.8 (6) 310 (26) 20.0 (2.1)

Where values are followed by different uppercase or lowercase letters for each soil depth, this indicates that treatment means are significantly
different from each other at P<0.05 or P<0.10, respectively

NWNG no warming with no grazing, NWG no warming with grazing, WNG warming with no grazing, WG warming with grazing
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MBN compared with the highly positive correlations
between SOC and MBC.

4 Discussion

4.1 Effects of warming on C and N pools

Some studies reported that labile C and N pools obtained
through different hydrolysis methods as well as microbial
biomass C and N pools were significantly increased by
experimental warming and elevated CO2 (Belay-Tedla et al.
2009; Zak et al. 1993) through accelerated decomposition
rates or enhanced substrate inputs. According to our
published results (Luo et al. 2009), WNG increased dissolved

organic C (DOC) in 2006 and 2007. Here, we also found that
warming increased various C and N pools including MBC,
MBN and SON, as well as total N in the soil.

Microbial biomass C and N pools are vital components
of ecosystem cycling and serve as a source (mineralization)
or a sink (immobilization) of labile nutrients (Hu et al.
1997). Microbial biomass could respond rapidly to changes
in soil moisture (Skopp et al. 1990) and soil temperature
(Fang et al. 2005). A lag time for microbial biomass C and
N in response to experimental warming had been reported
in field experiments in subarctic soils (Ruess et al. 1999).
However, in our study, warming increased both MBC and
MBN at the 10–20 and 20–30 cm depths, suggesting that
microbial immobilization of C and N was significantly
enhanced by warming despite the control of decreased soil
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Fig. 2 NH4
+–N (a), NO3

−–N (b) and total inorganic N (c)
concentrations at soil depths of 0–10, 10–20, 20–30 and 30–40 cm
under different warming and grazing regimes, and net N transformations
in the 0- to 10-cm soil under laboratory low-temperature conditions (4°C)
for 3 months (d). NWNG no warming with no grazing, NWG no

warming with grazing, WNG warming with no grazing, WG warming
with grazing. Different letters mean significant differences between
treatments at P<0.05 for each soil depth (a–c) and each N
transformation process (d). Mean ± SE is shown in the figure
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moisture on microorganisms. This was consistent with the
results from the low-temperature incubation where warming
led to net immobilization of N, whilst no warming led to
net N mineralization during the incubation (see Fig. 2d).
Microorganisms, especially nitrifiers, were largely stimulated

by warming as NH4
+–N was continuously being consumed

(see Fig. 2d), indicating a great demand by microbes in the
warming plots to take up inorganic N. Besides the increase in
the microbial biomass C and N pools, how warming affects
the nitrifying groups and other microorganisms will be
crucial for understanding the mechanisms of microbial-
mediated C and N cycling. Further studies are required to
investigate the effects of warming and grazing on nitrifying
and denitrifying communities.

SOC and SON, often considered as direct substrates of N
mineralization, were small but highly bioactive pools and
were important in controlling short-term terrestrial C and N
cycling (Chen and Xu 2008; Belay-Tedla et al. 2009).
Several results had confirmed that some plants were able to
directly utilize and generally prefer amino acid over
inorganic N (Schimel and Chapin 1996; Chen and Xu
2008). It was also reported that in the alpine meadow of the
Qinghai–Tibet Plateau, organic N uptake by plants was
quantitatively significant under field conditions (Xu et al.
2004, 2006). Most of SOC and SON in soils were derived
from root exudation, litter decomposition, transformation of
organic matters and immobilization of inorganic C and N
(Chen and Xu 2006, 2008). Therefore, the quantity and
quality of organic and inorganic inputs and the associated
microbially mediated processes, which were always
controlled by temperature and moisture, were important
in determining the sizes of SOC and SON. In our study,
warming did not affect SOC, but significantly increased
SON at the 10–20 cm depth, implying that both pools
might not simply be controlled by a single factor but by a
combination of temperature, moisture, substrate inputs and
microbial processes. According to our previous findings
(Luo et al. 2009), the direct contribution of temperature
and moisture on DOC was small, whilst biotic factors (i.e.
quality of standing dead and belowground biomass) were
the main controls on DOC in the soil. Belay-Tedla et al.
(2009) also suggested that the increases in labile and
microbial biomass C and N pools under warming conditions
largely resulted from increased above- and belowground
biomass. On the other hand, higher soil temperature in
warmed plots might stimulate the decomposition of the
recalcitrant pools (Knorr et al. 2005), which could increase
labile C and N levels, whilst decreased soil moisture under
warming might restrict the decomposition of the labile and
recalcitrant pools (Skopp et al. 1990). Therefore, the overall
direct effects of temperature and moisture on labile C and N
pools might be relatively small compared with the impact of
changes in substrate inputs. However, the increased SON
indicated a larger source for direct plant uptake or N
mineralization under warming conditions.

The effect of warming in increasing total N, espe-
cially at the 10–20 and the 20–30 cm depths, might
result from the shift in plant composition because
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warming significantly increased the N-fixing plants in our
study (data not shown). Despite the scarcity of published
information about this effect, it was very likely that warming
would cause change in plant community composition, which
would lead to shifts in the composition of microorganisms
through alterations in aboveground inputs and rhizospheric
exudates that might favour different microorganisms.
This ‘plant–microbe’ interaction could feedback in
regulating C and N cycling in the long term (Xu and
Chen 2006; Xu et al. 2009). In addition, at 0–10 cm,
warming did not affect total N significantly, implying that
near the soil surface, there could be large disturbance like
grazing, causing considerable perturbations in top soil N
contents. Warming tended to affect δ13C by decreasing it
significantly at the 10–20 and the 20–30 cm depths.
Previous studies suggested that soil δ13C was highly
related with plant δ13C through plant litter inputs, which
had been demonstrated to be positively related to plant water
use efficiency (WUE) and photosynthesis (Xu et al. 2000;
Huang et al. 2008a, b; Tutua et al. 2008; Sun et al. 2010).
Farquhar et al. (1989) indicated that the decrease in soil
moisture under warming conditions could result in a
greater WUE of plants, as well as enhanced C4

photosynthesis, which could cause δ13C to increase
(Farquhar et al. 1989). However, within this region, C3

species were believed to dominate. The decrease in δ13C
here under warming conditions was more likely to be
caused by the increase in annual net primary production
(data not shown), which was a direct result of enhanced
photosynthesis. Therefore, discrimination against 13C by the
carboxylating enzyme in C3 plants (Farquhar et al. 1982;
Dawson et al. 2002) could be enhanced as a result of
stimulated photosynthesis, leading to the decrease of δ13C in
plants and subsequently in soil. The decrease of δ13C
suggested that water content might not act as a limiting
factor to plants here. The C isotope composition of plants
could provide an opportunity to assess the long-term stability
of plant communities and climate of a region (Nordt et al.
1994). Therefore, the signature of soil δ13C under warming
conditions in our study reflected a significant implication of
warming on plants of this ecosystem.

4.2 Effects of grazing on C and N pools

It was well documented that grazing could enhance the
decomposition and mineralization of SOM through its impact
on quality and quantity of litter (Hobbs et al. 1991; Shariff et
al. 1994; Bardgett et al. 2001; Olofsson et al. 2001), but
inconsistent results had been reported on the effects of
grazing on C and N pools. Some suggested that grazing
could increase C and N pools (Reeder et al. 2004), whilst
others showed opposite results (Stark et al. 2003; Golluscio
et al. 2009), indicating that the effects of grazing on C and N

pools could vary with ecosystems. Here, we found in the
alpine meadow ecosystem of the Qinghai–Tibet Plateau that
grazing greatly increased inorganic N, the effect of which
was intensified by warming. Grazing also increased SOC
and δ15N at 0–10 cm, but decreased SON at the 10–20 and
20–30 cm depths, and MBC at 20–30 cm.

The significant increase in NO3
−–N concentrations under

NWG and WG compared with non-grazing treatments
could be explained by the direct effect of sheep dung
deposition which probably contains high concentrations of
inorganic N and could rapidly increase nitrate concentration
on the soil surface (Hobbs et al. 1991; Bardgett et al. 1997;
Olofsson et al. 2001). Microbial activity could also be
stimulated by saliva excreted by grazing animals. In
addition, there could be a general positive feedback as
herbivory could promote plant regrowth as well as energy
and nutrient flow in grazed plots (Hamilton and Frank
2001). Although NWG did not affect the total inorganic N
significantly, WG would increase it significantly (P=0.089),
implying that the effects of grazing on inorganic N could be
intensified by warming. The interaction between warming
and grazing could possibly stimulate microbial activities
and N mineralization strongly (Rustad et al. 2001; Melillo
et al. 2002), resulting in a substantial feedback in inorganic
N pools. The effects of grazing on inorganic N were more
significant at the 0–10 cm depth, implying the direct impact
of grazing on the highly dynamic and transient turnover of
labile N near the soil surface.

Grazing increased SOC at 0–10 cm, but decreased SON
at the 10–20 and 20–30 cm depths and MBC at 20–30 cm,
which was different from the effects of warming which
generally increased these labile organic C and N pools. The
removal of aboveground biomass by grazing would directly
decrease the litter mass input. However, the increase in
SOC at the 0–10 cm depth was more likely to be caused by
the changed quality of litter input. The decreases in SON
and MBC could be explained by less litter inputs as well as
the effects of grazing in enhancing mineralization (Shariff
et al. 1994; Hamilton and Frank 2001). The regrowth of
plants and the flow of nutrients promoted by grazing, as
well as the enhanced microbial activity stimulated by
enzymes contained in saliva and dung, would greatly
promote plant uptake of SON and its microbial mineraliza-
tion. These results suggest that unlike the effects of
warming which tended to favour increases in labile C and
N pools through increasing substrate input, grazing would
affect them by influencing the quality of litter input and
stimulating the nutrient and energy flows in the soil
(Hamilton and Frank 2001). However, SON was less well
correlated with TN and MBN compared with the highly
positive correlations between SOC and MBC, indicating the
strong influences of grazing on N cycling. Further inves-
tigations should be conducted into C and N cycling and
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storage under future warming and grazing conditions in the
alpine meadow of the Qinghai–Tibet Plateau.

Unlike warming, grazing did not affect δ13C but increased
δ15N at the 0–10 cm depth, which might also imply that N
cycling could be directly accelerated by grazing rather than
warming. Soil δ15N was presumed to be an index of N
cycling as a higher cycling rate might yield greater N loss
(Nadelhoffer and Fry 1994; Dawson et al. 2002). The change
in soil δ15N under grazing conditions could be attributed to
both the N inputs in the forms of sheep excreta, as well as
the shift in the compositions of the plants and microbes
because of grazing (Frank and Evans, 1997). Soil could
become enriched in 15N when 15N-depleted products (i.e.
NH3, NO3

−, N2O, N2), resulting from fractionation occurring
during soil N transformations, were lost from the soil system
(Evans and Ehleringer 1993; Nadelhoffer and Fry 1994). Our
previous study indicated that NWG and WG significantly
increased the average annual N2O flux (57.8% and 31.0%)
compared with NWNG and WNG, respectively (Hu et al.
2010). Thus, considering there is now increasing grazing
pressure in this region, N cycling could be accelerated in the
long term, resulting in higher N availability as well as larger
N2O emissions.

5 Conclusions

After 3 years’ treatment, warming and grazing affected labile
C and N pools significantly and differently. Warming
significantly increased TN, MBC, MBN, and SON and
decreased δ13C at the 10–20 and 20–30 cm soil depths,
whilst grazing generally decreased SON at 10–20 and 20–
30 cm and MBC at the 20–30 cm depth. Grazing alone
increased NO3

−–N, total inorganic N, SOC and δ15N at the
0–10 cm depth. Strong interactive effects of warming and
grazing on soil C and N pools found in this study might have
significant implications for the long-term C and N storage
and productivity of the alpine meadow ecosystem in the
Qinghai–Tibet Plateau of China. In future works, how
seasonal patterns of labile C and N, as well as microbial
communities that mediate the key processes in soil C and N
cycling, respond to warming and grazing will be crucial to
increase our knowledge on the mechanisms and long-term
effects of warming and grazing on this plateau.
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