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H I G H L I G H T S

c We evaluate the denoising techniques in protein–protein interactions (PPIs) prediction.
c Two kinds of denoising formulas efficient in phylogenetic trees construction are introduced.
c We integrate noise in protein sequences with a support vector machine.
c Three kinds of organisms PPIs datasets are used for validation.
c The denoising formulation cannot improve the PPIs prediction.
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a b s t r a c t

The past decades witnessed extensive efforts to study the relationship among proteins. Particularly,

sequence-based protein–protein interactions (PPIs) prediction is fundamentally important in speeding

up the process of mapping interactomes of organisms. High-throughput experimental methodologies

make many model organism’s PPIs known, which allows us to apply machine learning methods to learn

understandable rules from the available PPIs. Under the machine learning framework, the composition

vectors are usually applied to encode proteins as real-value vectors. However, the composition vector

value might be highly correlated to the distribution of amino acids, i.e., amino acids which are

frequently observed in nature tend to have a large value of composition vectors. Thus formulation to

estimate the noise induced by the background distribution of amino acids may be needed during

representations. Here, we introduce two kinds of denoising composition vectors, which were success-

fully used in construction of phylogenetic trees, to eliminate the noise. When validating these two

denoising composition vectors on Escherichia coli (E. coli), Saccharomyces cerevisiae (S. cerevisiae) and

human PPIs datasets, surprisingly, the predictive performance is not improved, and even worse than

non-denoised prediction. These results suggest that the noise in phylogenetic tree construction may be

valuable information in PPIs prediction.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Identification of the interactions among proteins is crucial to
illustrate their functions, and further, can help scientists to

understand the underlying mechanisms of many biological phe-
nomena, such as cell cycles, apoptosis, signal transduction and
pathogenesis of diseases. It has become one of the most challen-
ging and important tasks in the post-proteomic researches.
Various experimental techniques have been developed for large-
scale protein-protein interactions (PPIs) analysis, including yeast
two-hybrid systems (Fields and Song, 1989; Ito et al., 2001), mass
spectrometry (Gavin et al., 2002; Ho et al., 2002), protein chip
(Zhu et al., 2001) and so on. One computational idea is applying
the machine learning methods to learn understandable rules from
the available PPIs and furthermore to predict novel interactions
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(Deng et al., 2011; Hu et al., 2011; Ma et al., 2011; Qiu and Wang,
2012; Chou and Cai, 2006; Ren et al., 2011; Xia et al., 2010; Yang
and Jiang, 2010; Zhang et al., 2011; Zhou, 2011). Comparing with
costly and time-consuming biochemical experiments, computa-
tional methods for PPIs prediction have played an important role
(Shen et al., 2007).

One key issue in machine learning is to extract protein
attributes that are highly relevant to prediction of PPIs. Among
the various attributes of proteins, the primal sequences are most
popular because they are the most basic and the easiest to obtain
due to the rapid development of genomic sequencing technolo-
gies. In addition, the primary sequences of proteins actually
specify their structures that provide the molecular basis for PPIs.
Therefore, protein primary sequences hold the promise to contain
virtually sufficient information to construct the most universal
predicting method (Shen et al., 2007).

How to encode the given protein sequences as the real-value
vectors is the key to construct a universal sequence-based PPIs
predictor. Many studies attempt to apply composition vectors to
tackle this problem for various kinds of applications (Shen et al.,
2007; Ben-Hur, 2005; Gomez et al., 2003; Bock and Gough, 2001;
Najafabadi and Salavati, 2008; Leslie et al., 2002). Composition
vectors have been used widely in predictions, for example,
protein localization predictions. The subcellular localization of a
protein allows further understanding its structure and molecular
function (Arango-Argoty et al., 2011). Many types of composition
vector have been successfully developed for protein subcellular
localization prediction, such as PseAA composition (Chou, 2001;
Chou and Cai, 2004; Chou and Shen, 2006), signal peptide
(Hoglund et al., 2006), sequence domain (Chou and Cai, 2002),
PSSM (Mak et al., 2008; Pierleoni et al., 2006), k-mer (Mei and
Wang, 2010; Dijk et al., 2008), etc. However, the composition
vector value might be highly correlated to the distribution of
amino acids, i.e., amino acids which are frequently observed in
nature tend to have a large value of composition vectors. Thus
formulation to estimate the noise seems to be needed during
representations. There are some works have discussed this
problem, for example, Chang et al. have proposed a probability-
based mechanism for transforming protein sequences into feature
vectors to eliminate the noise of composition vector (Yu et al.,
2010). However, when constructing one protein denoising com-
position vector, more than 10 thousand times permutation are
needed, resulting in very large computational consumption. Chan
et al. have proposed a low computational cost denoising mechan-
ism, which is based on the principle of maximum entropy, to
encode the proteins as real-value vectors (Chan et al., 2010).
By using the angle-based distance measures on the denoising
vectors, they have constructed well-grouped phylogenetic trees.

Following the previous works, in this paper, we introduce two
types of low costly denoising formulas, which have clear prob-
ability assumptions and were successfully used in phylogenetic
tree construction. We hypothesize that these two techniques may
reveal some true sequence noise in proteins and may be useful to
improve PPIs prediction. To test whether the PPIs prediction
performance can be improved by these two denoising formulas
or not, we introduce support vector machine (SVM) as the PPIs
predictor. SVMs, which are motivated by statistical learning
theory (Vapnik, 1995, 1998; Deng et al., 2012), have been proven
successful on many different classification problems in bioinfor-
matics (Noble, 2004). Identification of PPIs can be addressed as
the two-classification problem: determining whether a given pair
of proteins is interacting or not. Thus two-class SVM with the
composition vectors and denoising composition vectors are used
to predict Escherichia coli (E. coli), Saccharomyces cerevisiae

(S. cerevisiae) and human PPIs, respectively. Surprisingly, for all
three kinds of organisms on randomly and artificially negative

datasets, the predictive performance of denoising composition
vectors are not better than the primal composition vectors. These
results suggest that, the denoising formulation efficient in phylo-
genetic trees construction cannot improve the PPIs prediction, i.e.,
what is noise is dependent on the applications.

According to a recent comprehensive review (Chou, 2011), to
establish a really useful statistical predictor for a protein system,
we need to consider the following procedures: (i) construct or
select a valid benchmark dataset to train and test the predictor;
(ii) formulate the protein samples with an effective mathematical
expression that can truly reflect their intrinsic correlation with
the target to be predicted; (iii) introduce or develop a powerful
algorithm (or engine) to operate the prediction; (iv) properly
perform cross-validation tests to objectively evaluate the antici-
pated accuracy of the predictor; (v) establish a user-friendly web-
server for the predictor that is accessible to the public. We
described these steps as follows.

We begin by introducing a popular composition vector in
protein representation. Then we give the two kinds of denoising
formulas which is efficient in phylogenetic trees construction.
After that, by performing cross-validation tests, we compare two
kinds of denoising formulas with primal composition vector
regarding to their predictability, and show the predictive accuracy
deterioration arising from denoising technology. Lastly, the dis-
cussions and conclusions are presented.

2. Materials and methods

Sequence-based attributes become popular in PPIs prediction
not only because that the primal sequences are most basic and
the easiest to obtain, but also owing to the assumption that
knowledge of the amino acid sequence alone might be sufficient
to estimate the evolutionary history, overall structure and func-
tion, and the interacting propensity between two proteins. Espe-
cially, Shen et al. have proposed a simple but effective feature
encoding method, called conjoint triad feature (CTF) to represent
the protein sequences (Shen et al., 2007). Shen et al. have shown
that SVM with the CTF outperforms other sequence-based meth-
ods in human PPIs prediction. In addition, the CTF can be
implemented in an economic way and contains no pre-defined
parameters. Inspired by these observations, we first introduce the
CTF and then apply the denoising approaches to formulate the
denoising CTF vectors. In the Results section, we test the perfor-
mance of the denoising CTF vectors on E. coli, S. cerevisiae and
human randomly and artificially negative datasets.

2.1. Input feature vectors

We give the description on the CTF now. First, based on the
dipoles and volumes of the side chains, the 20 amino acids
are classified into seven classes: fA,G,Vg, fI,L,F,Pg, fY ,M,T ,Sg,
fH,N,Q ,Wg, fR,Kg, fD,Eg, fCg. Second, a binary space (V,F) is applied
to represent a given protein. The element of V, vi represents a sort
of triad type, and the element of F, fi represents the frequency of
type vi appearing in the given protein sequence. Thus a 343
(7�7�7)-dimension vector is used to represent given protein,
where each element of this vector is the frequency of the
corresponding conjoint triad appearing in the protein sequence.
The detailed definition and description for ðV ,FÞ are illustrated in
SI in Fig. 3 in Shen et al. (2007).

2.1.1. Denoising vectors

The CTF considers the frequency of each conjoint triad type.
However, the value of CTF’s element might be highly correlated to
the distribution of amino acids, i.e., triads that consist of amino
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acid groups frequently observed in nature (e.g., groups 1 and 2)
tend to have a large value of frequency. To deal with this problem,
we introduce the denoising formula based on maximum entropy
method to remove noises.

Given a conjoint triad type a1a2a3, the following two formulas
proposed by Hao et al. (2003) and Yu et al. (2005) are applied to
estimate the noise of a1a2a3:

Hao’s formula:

qHaoða1a2a3Þ ¼
ðf ða1a2Þf ða2a3ÞÞ=f ða2Þ if f ða2Þa0,

0 otherwise,

(
ð1Þ

where f(u) represents the frequency of any string u appearing in
the sequence. The formula (1) reveals the functional and evolu-
tionary relatedness of word sequence, and was successfully
applied for the phylogenetic analysis of prokaryotes, based on
whole genome sequences (Hao et al., 2003).

Yu’s formula:

qYuða1a2a3Þ ¼ ðf ða1Þf ða2a3Þþ f ða1a2Þf ða3ÞÞ=2, ð2Þ

where f(u) represents the frequency of any string u appearing in
the sequence. The formula (2) was commonly introduced in the
area of complex and dynamic systems, and was successfully
applied for the phylogenetic analysis of prokaryotes, chloroplasts
and other phylogenetic problems, based on whole genome
sequences (Yu et al., 2005). Both Hao’s and Yu’s methods provide
an effective means to correctly infer phylogenetic trees from
composition vectors of sequences. Their assumptions behind
these two formulas are the random background of biological
sequences.

Then the input vector feeding to the SVM can be formulated as
the signal-to-noise ratio:

sða1a2a3Þ ¼ ðf ða1a2a3Þ�qða1a2a3ÞÞ=qða1a2a3Þ: ð3Þ

Comparing with the CTF, the element of the denoising vector
becomes the signal-to-noise ratio s.

2.1.2. Protein pairs vectors

PPIs prediction treats each protein pair as the input, the
vectors representing the protein pairs should be proposed. The
concatenation operator is commonly used in protein pairs repre-
sentation. However, the asymmetry problem will arise due to the
fact that the prediction result will be different on protein pair A–B
and B–A. To solve this problem, we concatenate the arithmetical
and the geometric average of protein vectors to represent the
protein pairs, i.e.

FAB ¼ ððFAþFBÞ=2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
FAnFB

p
, ð4Þ

where FA,FB represent the feature vector of protein A and B,
the operator n means the multiplication of the corresponding
elements, and � represents the concatenation operator. The
above representation method for protein pairs cannot only main-
tain symmetry (A–B identical to B–A), but also make the feature
vectors representing proteins constructed uniquely from the
protein pair representing vector (Ren et al., 2011).

2.2. Negative training datasets

With the above feature vector construction scheme, the PPIs
prediction task is ready to be formalized as a classification
problem with the publicly available PPIs the positive samples,
and the others as the negative samples. The training data
imbalance problem will arise, because there are only a relatively
small number of known PPIs. This situation will make the SVM
ineffective in determining the class boundary (Wu and Chang,
2003). To maintain a balance between training positive and
negative datasets in SVM training procedure, that is, to make

the number of negative dataset the same as the positive dataset,
we introduce two types of negative datasets to train the SVM-
based predictor. The first one is the randomly negative dataset.
The randomly negative samples are sampled randomly from the
complementary graph of the known PPIs network. Comparing
with the method for generating the negative training dataset with
the help of the functional annotation of proteins, this randomly
generating scheme for negative training data can lead to unbiased
estimates of prediction accuracy (Ben-Hur and Noble, 2006). The
second one is the artificially negative dataset. The artificially
negative samples are constructed by uShuffle based on the
positive datasets (Jiang et al., 2008). uShuffle creates the negative
proteins by generating uniform random permutations of positive
sequences while preserving the exact k-let counts. Here, we let
k be 1 and 2, that is preserving amino acid composition and
binary composition, respectively.

2.3. Benchmark datasets and SVM implementation

Here, PPIs on three different organisms: E. coli, S. cerevisiae and
human are used to validate the performance of the proposed
predictive models. E. coli and S. cerevisiae PPIs datasets are first
introduced in Table 1 in Najafabadi and Salavati (2008). Human
PPIs dataset is proposed by Yungki Park (2009). The protein
sequences are download from the RefSeq database of NCBI.
In addition, the interactions which contain missing proteins in
the corresponding proteome sequence datasets are excluded.
Thus the number of interactions is 6954, 6635 and 38324 for
E. coil, S. cerevisiae and human, respectively.

In statistical prediction, the following three cross-validation
methods are often used to examine a predictor for its effectiveness
in practical application: independent dataset test, sub-sampling
(5-fold, 7-fold, or 10-fold cross-validation) test, and jackknife test
(Chou and Zhang, 1995). However, as elucidated in Chou and Shen
(2008) and demonstrated by Eqs. (28)–(32) of Chou (2011), among
the three cross-validation methods, the jackknife test is deemed
the least arbitrary that can always yield a unique result for a given
benchmark dataset, and hence has been increasingly used and
widely recognized by investigators to examine the accuracy of
various predictors (Mohabatkar, 2010; Chou and Shen, 2010;
Esmaeili et al., 2010; Georgiou et al., 2009; Mohabatkar et al.,
2011; Chou et al., 2011; Xiao et al., 2011; Chou and Shen, 2010;
Wang et al., 2011; Wu et al., 2011; Chou et al., 2012). However, in
this study we used the independent dataset to test our model in
order to reduce the computational time as done by some investi-
gators using the SVM as the prediction engine.

We train the two-class SVM with denoising CTF and CTF by
using LibSVM (Chang and Lin, 2011). In the implementation of two-
class SVM, the RBF kernel function is used. The penalty parameter C

and the RBF kernel parameter g are optimized by grid search
approach with 3-fold cross-validation. To evaluate the performance
of our methods, we use the 10-fold cross-validation, that is, the
gold-standard dataset is split into 10 subsets with roughly equal
size. Each subset is then taken in turn as a test dataset, and train on
the remaining nine datasets. The performances of our proposed
methods are evaluated by the following evaluation criterions: AUC
(area under the receiver operating curve (ROC) curve (Gribskov and
Robinson, 1996), Accuracy ðAccÞ ¼ ðTPþTNÞ=ðTPþTNþFPþFNÞ,
Sensitivity ðSnÞ ¼ TP=ðTPþFNÞ, Specificity ðSpÞ ¼ TN=ðTNþFPÞ,
Precision ðPreÞ ¼ TP=ðTPþFPÞ, and F-measure¼ ð2� Sn� SpÞ=

ðSnþSpÞ. Here TP is the number of protein pairs correctly predicted
to interact, FP is the number of protein pairs predicted to interact
but actually not. And TN is the number of protein pairs that do not
interact and predicted correctly, FN is the number of protein pairs
predicted not to interact but actually interact.
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3. Results

3.1. Overview of performances for denoising methods

We overall compare two kinds of denoising formulas with
primal formula on all three kinds of organisms PPIs datasets
under AUC criterion in Figs. 1–3. From these three figures, we can
see that, on both randomly and artificially negative datasets, for
all three kinds of organisms PPIs datasets, DenoisingYu CTF obtains
much higher AUC than DenoisingHao CTF. However, the AUC
obtained by both DenoisingYu CTF and DenoisingHao CTF are worse
than obtained by the CTF. Although on S. cerevisiae artificially
negative datasets, DenoisingYu CTF can obtain the comparable
AUCs with the CTF, the prediction performance are still not
improved by this denoising formula. It means that the above
two kinds of denoising formulas, which is useful to construct
phylogenetic tree, cannot improve the performance of PPIs
prediction.

3.2. The performance on the randomly negative datasets

We test the effect of two kinds of denoising CTF formulas
(DenoisingHao CTF and DenoisingYu CTF) on E. coli, S. cerevisiae and
human randomly negative datasets, respectively. The evaluation

criterions obtained by denoising CTF and CTF when the corre-
sponding F-measure is the largest on E. coli, S. cerevisiae and
human randomly negative datasets are shown in Table 1. From
Table 1, we can see that, on all three kinds of organisms randomly
negative datasets, DenoisingYu CTF outperforms DenoisingHao CTF
with high AUC and nearly all other criterions. However, both
DenoisingYu CTF and DenoisingHao CTF perform worse than the CTF.
For example, on E: coli randomly negative dataset, comparing
with the CTF, the AUC and Sn obtained by DenoisingYu CTF
decrease by 1%, and the other criterions decrease by more or less
to a certain extent. On S. cerevisiae randomly negative datasets,
comparing with the CTF, the AUC, Acc, Pre and F-measure
obtained by DenoisingYu CTF decrease by 2 or 3%, and the Sn
drops by 7%. On human randomly negative datasets, comparing
with the CTF, the AUC, Acc, Sn and F-measure obtained by
DenoisingYu CTF decrease by over 5%, and the Pre drops by 2%.

These results suggest that, on randomly negative dataset, the
performance of DenoisingHao CTF and DenoisingYu CTF are not as
good as that of CTF, and even worse than it. That is, these two
kinds of denoising formulas, which is useful to construct phylo-
genetic tree, cannot improve the performance of PPIs prediction.

3.3. The performance on the artificially negative datasets

We then test the effect of two kinds of denoising CTF formulas
on E. coil, S. cerevisiae and human artificially negative datasets,
respectively. The evaluation criterions obtained by denoising CTF
and CTF when the corresponding F-measure is the largest on
three kinds of organisms artificially negative datasets are listed in
Table 2. Table 2 show that, on all three kinds of organisms
artificially negative datasets, DenoisingYu CTF outperforms Denoi-

singHao CTF with high AUC and all other criterions. However, both
DenoisingYu CTF and DenoisingHao CTF perform worse than the CTF.
For example, for E. coli, on 1-let dataset, comparing with the CTF,
the AUC obtained by DenoisingYu CTF decreases by 1%, Acc and
F-measure decrease by 3%, Sn drops by 6%, and Sp and Pre are
nearly same as the CTF obtained. On 2-let dataset, comparing
with the CTF, AUC, Acc, Sn, Pre and F-measure obtained by
DenoisingYu CTF decrease by more than 1%, and Pre is nearly same
as the CTF obtained. These results suggest that, on E. coil

artificially negative dataset, by introducing the denoising formu-
las which is useful to construct phylogenetic tree, the PPIs
prediction performance cannot improved.

On S. cerevisiae1-let datasets, comparing with the CTF,
although Acc, Sn, Pre and F-measure obtained by DenoisingYu

CTF increase by 1%, the AUC increases only 0.1%. On 2-let dataset,
comparing with the CTF, although Acc, Sn and F-measure
obtained by DenoisingYu CTF increase by 2–4%, the AUC only has

Fig. 1. The AUCs for various methods on randomly negative datasets.

Fig. 2. The AUCs for various methods on 1-let artificially negative datasets.

Fig. 3. The AUCs for various methods on 2-let artificially negative datasets.

Table 1
The performance comparison of denoising CTF with CTF on randomly generated

negative set. The best predictions obtained are highlighted in bold.

Organism Encoding

methods

Evaluation criterions

AUC Acc Sn Sp Pre F-

measure

E. coli CTF 0.886 0.797 0.794 0.799 0.798 0.797
DenoisingHao CTF 0.849 0.763 0.726 0.799 0.784 0.761

DenoisingYu CTF 0.877 0.791 0.782 0.799 0.796 0.791

S.

cerevisiae

CTF 0.948 0.880 0.879 0.927 0.909 0.882
DenoisingHao CTF 0.924 0.853 0.806 0.899 0.889 0.851

DenoisingYu CTF 0.929 0.862 0.824 0.899 0.891 0.861

Human CTF 0.899 0.824 0.848 0.799 0.809 0.823
DenoisingHao CTF 0.800 0.728 0.757 0.699 0.716 0.727

DenoisingYu CTF 0.845 0.765 0.730 0.799 0.785 0.763
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0.1% improvement. These results suggest that, on S. cerevisiae

artificially negative dataset, the DenoisingYu CTF outperforms the
CTF with 0.1% AUC improvement. However, this little improve-
ment is insufficient to support the fact that the prediction
performance can be improved by introducing the denoising
procedure.

On human 1-let datasets, comparing with the CTF, AUC, Acc, Sn
and F-measure obtained by DenoisingYu CTF decrease by over 3%,
the Pre decreases 1%. On 2-let dataset, comparing with the CTF,
AUC, Acc, Sn and F-measure obtained by DenoisingYu CTF decrease
by over 3%, the Pre drops nearly 2%. These results suggest that, on
human artificially negative dataset, the CTF also outperforms the
DenoisingYu CTF with over 3% improvement.

3.4. The performance of denoising formulas on the gene level

The two kinds of denoising formulas were proposed on the
gene level in Chan et al. (2010). By introducing these denoising
formulas, the well-grouped phylogenetic trees have been con-
structed. Therefore, we test the effect of these two denoising
formulas on the gene level on E. coli, S. cerevisiae and human
randomly negative datasets, respectively. That is, we encode
protein sequences by codon composition, and introduce the
denoising formulas (1) and (2) as the noise of the codon
composition, respectively, then apply the signal-to-noise ratio as
the input vectors for representing the proteins. Eq. (4) is also
applied as the representation vector for protein pairs, and it is
denoted as denoising codon. The evaluation criterions obtained
by denoising codon and codon composition when the correspond-
ing F-measure is the largest on all three kinds of organisms
randomly negative datasets are shown in Table 3. From Table 3,
we can see that, on both E. coli and S. cerevisiae PPIs datasets,
DenoisingYu codon outperforms DenoisingHao codon with high AUC
and all other criterions. However, both DenoisingYu codon and
DenoisingHao codon perform worse than codon itself. For example,
on E. coli randomly negative dataset, comparing with codon
composition, the AUC, Acc and F-measure obtained by DenoisingYu

codon decrease by 3%, Sn drops by more than 7%, and Pre drops by
1%. On S. cerevisiae randomly negative datasets, comparing with
the codon composition, the AUC, Acc and F-measure obtained by
DenoisingYu codon decrease by 3%, Sn drops by nearly 7%, and Pre
drops by 1%. These results suggest that, on gene level, the PPIs

prediction performance also cannot improved by introducing the
denoising methods.

On human PPIs datasets, DenoisingYu codon also outperforms
DenoisingHao codon with high AUC and all other criterions. While,
DenoisingYu codon obtain nearly same AUC and other criterions.
For example, comparing with the codon, AUC, Acc, Pre and
F-measure obtained by DenoisingYu codon increase by 0.3 percent,
the Sn increases only 0.5%. These results suggest that, on Human

PPIs dataset, the DenoisingYu formula on gene level has compar-
able performance with original formula. However, the prediction
performance are still not improved by introducing the DenoisingYu

formula.

4. Discussion and conclusion

In this paper, we introduce the denoising idea which is proved
to be useful in construction of phylogenetic trees into the PPIs
prediction. Specially, we first encode the given protein sequence
by the composition vector, and then introduce two denoising
formulas proved to be useful in phylogenetic tree construction as

Table 2
The performance comparison of denoising CTF with CTF on shuffled negative set. The best predictions obtained are highlighted in bold.

Organism Encoding methods Evaluation criterions

AUC Acc Sn Sp Pre F-measure

E. coli 1let-CTF 0.957 0.891 0.882 0.899 0.898 0.891
1-let-DenoisingHao CTF 0.910 0.824 0.848 0.799 0.809 0.823

1-let-DenoisingYu CTF 0.940 0.860 0.820 0.899 0.891 0.858

2-let-CTF 0.936 0.856 0.892 0.899 0.890 0.853
2-let-DenoisingHao CTF 0.904 0.818 0.836 0.799 0.807 0.818

2-let-DenoisingYu CTF 0.927 0.841 0.882 0.879 0.887 0.839

S. cerevisiae 1let-CTF 0.956 0.884 0.868 0.899 0.896 0.883

1-let-DenoisingHao CTF 0.950 0.885 0.871 0.879 0.897 0.885

1-let-DenoisingYu CTF 0.957 0.899 0.879 0.879 0.919 0.899
2-let-CTF 0.936 0.850 0.801 0.899 0.888 0.847

2-let-DenoisingHao CTF 0.935 0.866 0.837 0.899 0.893 0.867

2-let-DenoisingYu CTF 0.937 0.872 0.845 0.899 0.894 0.871

Human 1let-CTF 0.913 0.831 0.863 0.799 0.811 0.830
1-let-DenoisingHao CTF 0.822 0.748 0.795 0.799 0.776 0.744

1-let-DenoisingYu CTF 0.880 0.802 0.804 0.799 0.800 0.802

2-let-CTF 0.831 0.756 0.812 0.699 0.730 0.751
2-let-DenoisingHao CTF 0.770 0.705 0.716 0.699 0.701 0.705

2-let-DenoisingYu CTF 0.798 0.726 0.753 0.699 0.715 0.725

Table 3
The performance comparison of denoising codon composition with codon com-

position on randomly generated negative set. The best predictions obtained are

highlighted in bold.

Organism Encoding

methods

Evaluation criterions

AUC Acc Sn Sp Pre F-

measure

E. coli Codon 0.897 0.812 0.825 0.799 0.805 0.812
DenoisingHao

codon

0.855 0.766 0.732 0.799 0.785 0.764

DenoisingYu codon 0.868 0.775 0.751 0.799 0.789 0.774

S.

cerevisiae

Codon 0.942 0.881 0.863 0.899 0.896 0.881
DenoisingHao

codon

0.887 0.811 0.783 0.899 0.802 0.806

DenoisingYu codon 0.911 0.847 0.794 0.899 0.888 0.843

Human Codon 0.740 0.677 0.655 0.699 0.685 0.676

DenoisingHao

codon

0.693 0.642 0.584 0.699 0.660 0.636

DenoisingYu codon 0.743 0.680 0.660 0.699 0.687 0.679
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the noise vector, finally apply the signal-to-noise ratio as the
input vector for representing the given protein. The concatenation
of arithmetical and geometric average of protein vectors are used
as the protein pair representation vector, which can not only
maintain symmetry, but also make the protein representing
vectors constructed uniquely from the protein pair representing
vector. We test the effect of the denoising vectors on E. coli, S.

cerevisiae and human randomly and artificially negative datasets,
and compare it with the primal composition vectors. The evalua-
tion criterions obtained by both two denoising vectors are not
improved. These results suggest that, although the denoising
methods can improve the performance of phylogenetic trees
construction, it cannot improve the performance of PPIs predic-
tion. That is, what is noise is dependent on the applications.

The reason that the lower accuracy of denoising methods here
may be that the CTF first classifies 20 amino acids into seven
classes based on the dipoles and volumes of the side chains, and
then apply conjoint triad (3-string) composition to represent the
given protein. That is, the denoising is already done by reducing
the dimension, and further denoising will make information
shrink. For testing this assumption, we do the experiments on
composition vector without fusion of amino acids (that is a
20�20�20 vector) and corresponding denoising vector. For
concise, we take the Helicobacter pylori PPIs dataset as an
example. And we found that the denosing methods also perform
worse than composition vector without fusion of amino acids.
Specially, when we test composition vector without fusion of
amino acids (a 20�20�20 vector) on Helicobacter pylori PPIs
dataset, AUC reaches 0.80, while validated on Yu’s denoising
vector, AUC drops to 0.79.

The two types of denoising techniques we chosen have clear
probability assumptions and did make a success in phylogenetic
tree construction. We hypothesized that these two techniques
may reveal some true sequence noise in proteins and may be
useful to improve PPIs prediction. However, the computational
results did not support our hypothesis. Thus, we concluded that
‘noise’ in phylogenetics may be ‘information’ in PPIs. This con-
clusion needs further confirmation by excluding the influence of
the selection of denoising techniques in the future.

Since user-friendly and publicly accessible web-servers repre-
sent the future direction for developing practically more useful
models, simulated methods, or predictors (Chou and Shen, 2009),
we shall make efforts in our future work to provide a web-server
for the method presented in this paper.
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