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Abstract A pair of novel high-molecular-weight

glutenin subunits (HMW-GS) 1Dx3.1t and 1Dy11*t

were revealed and characterized from Aegilops tau-

schii Coss. subspecies tauschii accession AS60. SDS-

PAGE band of 1Dx3.1t was between those of 1Dx2

and 1Dx3, while 1Dy11*t was between 1Dy11 and

1Dy12. The lengths of 1Dx3.1t and 1Dy11*t were

2,514 bp and 1,968 bp, encoding 836 and 654 amino

acid residues, respectively. Their authenticity was

confirmed by successful expression of the coding

regions in Escherichia coli. Network analysis indi-

cated that 1Dx3.1t together with other five rare alleles

only detected in Asia common wheat populations

represented the ancestral sequences in Glu-D1 locus.

Neighbor-joining tree analysis of previously cloned

x-type and y-type alleles in the Glu-D1 locus

supported the hypothesis that more than one Ae.

tauschii genotypes were involved in the origin of

hexaploid wheat and that different Ae. tauschii

accessions contributed the D genome to common

wheat and Ae. cylindrical Host, respectively. An Ae.

tauschii accession with 1Dx3.1t or a closely related

allele probably have involved in the origin of common

wheat. Since accession AS60 used in this study

belonged to typical ssp. tauschii, present results

suggested the possibility that ssp. tauschii was

involved in the evolution of common wheat.

Keywords Aegilops tauschii � Bacterial expression �
HMW-GS � Phylogenetic analysis

Introduction

High-molecular-weight glutenin subunits (HMW-

GSs) play an important role in determining dough

viscoelastic properties and bread-making quality of

common wheat (Triticum aestivum L.) (Payne 1987;

Shewry et al. 1992). HMW-GSs are encoded by

complex Glu-1 loci, which are located on the long

arms of homoeologous group 1 chromosomes. Each

Glu-1 locus consists of two paralogous alleles of

duplication origin that encode the x and the y types of

HMW-GSs, respectively. The Glu-1 loci on chromo-

somes 1A, 1B and 1D are called Glu-1A, Glu-1B and

Glu-1D, respectively. Therefore, common wheat has

six HMW-GS alleles, namely Glu-1Ax, Glu-1Ay, Glu-

1Bx, Glu-1By, Glu-1Dx and Glu-1Dy (Payne 1987;

Shewry et al. 1992).
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Aegilops tauschii Coss. is the D-genome progenitor

of common wheat. Some HMW-GS alleles from Ae.

tauschii have been integrated into hexaploid wheat

background and made a positive influence on the

bread-making properties (Peña et al. 1995; Hsam et al.

2001; Wieser et al. 2003). Ae. tauschii has a much

higher HMW-GS diversity than common wheat on

Glu-D1 locus (Payne and Lawrence 1983; Lagudah

and Halloran 1988, 1989; Lagudah and Appels 1993;

William et al. 1993; Gianibelli et al. 2001; Yan et al.

2003; Rehman et al. 2008). To date, 12 new x-type

alleles (1Dx1.1t, 1Dx1.5t, Dtx1.5, 1Dx1.6t, 1Dx2t,

1Dx2.1t, 1Dx3t, 1Dx4t, Dx5t, 1Dx5*t, 1Dx5.1*t, and

1Dx5.2t) (Lu and Lu 2005; Wan et al. 2005; Zhang

et al. 2008; Yan et al. 2008; An et al. 2009; Fang et al.

2009) and 15 new y-type alleles (Dy8.1t, 1Dy9.5,

D ty10, 1Dy10.1t, 1Dy10.4t, 1Dy10.5t, 1Dy10.5*t,

Dy12t, 1Dy12t, 1Dy12.1t, 1Dy12.1*t, 1Dy12.2t,

Dy12.4 t, 1Dy12.5 t, and 1Dy13t) (Mackie et al.

1996; Yan et al. 2002, 2004, 2008; Hassani et al. 2005;

Lu and Lu 2005; Zhang et al. 2006, 2009; Su et al.

2009; Chang et al. 2010) have been sequenced in Ae.

tauschii.

This communication reports discovery and charac-

terization of novel x- and y-type HMW-GS alleles

from Ae. tauschii subspecies tauschii accession AS60

and discusses their phylogenetic relationships with

previously identified alleles on the Glu-D1 loci of T.

aestivum and Ae. tauschii.

Materials and methods

Plant materials and SDS-PAGE

Plant materials used in this study included Ae. tauschii

(2n = 2x = 14, DD) subspecies tauschii accession

AS60 from Iran and common wheat (2n = 6x = 42,

AABBDD) lines Chinese Spring (null, Bx7 ? By8,

Dx2 ? Dy12), Longfumai 1 (1Ax2*, Bx7 ? By8,

Dx5 ? Dy10), Jinan 17 (1Ax1, Bx7 ? By8, Dx3 ?

Dy12), and Shannongfu 63 (?, Bx7 ? By9, Dx4 ?

Dy11). The common wheat cultivars were used as

standards in the comparisons of electrophoresis

mobility of HMW-GSs. Seed protein extraction and

sodium dodecyl sulfate polyacrylamide gel electro-

phoresis (SDS-PAGE) were done as described by Wan

et al. (2005).

DNA extraction and PCR amplification

Genomic DNA was extracted from young leaves of

Ae. tauschii accession AS60 as described by Yan et al.

(2002). A pair of universal primers (P1: 50-ATGGC

TAAGCGGTTAGTCCTCTTTG-30, P2: 50-CTAT

CACTGGCTGGCCGACAATGCG-30) was designed

and used for amplifying the complete coding region of

the Glu-D1 alleles following the method by Yuan et al.

(2009), which was modified from Sugiyama et al.

(1985) and Anderson et al. (1989).

Cloning, sequencing and comparative analyses

of Glu-D1 genes

PCR products were cut from agrose gel and purified

using E.Z.N.A.�Gel Extraction Kit (OMIGA). The

DNA fragments were then ligated into pMD18-T

plasmid vector (TaKaRa, Dalian, China). The ligated

products were transformed into Escherichia coli strain

DH10B and then sequenced from the plasmids. Full-

length sequence of each allele was obtained by

sequencing a set of overlapping sub-clones with

nested deletion method (Yan et al. 2002). Multiple

sequences were aligned using ClustalX with default

options (Thompson et al. 1999) and the alignments

were manually refined in an effort to maximize the

positional homology.

Expression of cloned Glu-D1 alleles in E. coli

The cloned Glu-D1 alleles were amplified to remove

the signal peptides using the primers: 50-ACC

CATATGGAAGGTGAGGCCTCTGAGC-30 and 50-T
TCCTCGAGCTATCACTGGCTGGCCGAC-30 for

1Dx3.1t, and 50-ACCCATATGGAAGGTGAGGCC

TCTAGGC-30 and 50-TTCCTCGAGCTATCACTGG

CTGGCCGAC-30 for 1Dy11*t (NdeI or XhoI restric-

tion site is underlined). The modified PCR products

were cloned into the expression vector pET-30a

(Novagen) and transformed into E. coli strain BL21

(DE3) pLsS. Expression of HMW-GSs in E. coli was

induced with 1 mM isopropyl b-D-thiogalactopyra-

noside (IPTG) for 5 h using the cells without IPTG as

reference. Samples of the expressed HMW-GSs for

1Dx3.1t were extracted from 1 ml of the induced or the

uninduced bacterial cultures and used for SDS–PAGE

analysis according to Wan et al. (2005). The
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selectively precipitated protein samples for 1Dy11*t

were prepared for SDS–PAGE analysis as described

by Hu et al. (2010).

Phylogenetic analysis

Median-joining (MJ) network was constructed as

described by Fan et al. (2009) for this study using

the nucleotide sequences of signal peptide, N-terminal

domain, and C-terminal domain. Neighbor-joining

tree was constructed by the software MEGA5. The

bootstrap values in phylogenetic tree were estimated

based on 1,000 replications. Tajima’s p (Tajima 1989)

and Watterson’s h (Watterson 1975) were conducted

to estimate nucleotide diversity. Tajima’s p quantifies

the mean percentage of nucleotide differences among

all pairwise comparisons for a set of sequences, while

Watterson’s h is simply an index of the number of

segregating (polymorphic) sites. These parameters

were calculated with DnaSP 4.10.9 (Rozas et al. 2005)

and ProSeq 2.0 (Filatov 2002).

Results and discussion

SDS-PAGE analysis

SDS-PAGE analysis showed that Ae. tauschii acces-

sion AS60 possessed a pair of novel HMW-GSs

(Fig. 1a). The band of the new x-type subunit was

situated between those of 1Dx2 and 1Dx3. This new

x-type HMW-GS thus was designated as 1Dx3.1t. The

new y-type subunit was situated between 1Dy11 and

1Dy12, and, therefore, was designated as 1Dy11*t.

Fig. 1 Characterization of HMW-GS alleles in Ae. tauschii
AS60.a SDS-PAGE detection of HMW-GSs in Chinese Spring

(lane 1), Longfumai 1 (lane 2), Ae. tauschii accession AS60

(lane 3), Jinan 17 (lane 4), and Shannongfu 63 (lane 5). b PCR

amplification of alleles 1Dx3.1t (long arrowhead) and 1Dy11*t

(short arrowhead) from AS60. c Expression of the cloned

1Dx3.1t in E. coli. The expression of mature protein was

detected in the IPTG-induced bacterial cells (arrowhead), which

showed a band identical to 1Dx3.1t extracted from seed from

AS60. In contrast, this mature protein was not observed in the

control bacterial culture (CK) that was not induced by IPTG.

d Expression of the cloned 1Dy11*t in E. coli. The bacterially

expressed mature protein (arrowhead) showed a band identical

to 1Dy11*t from AS60
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Molecular characterization of novel HMW-GS

genes in AS60

PCR amplification of the coding region of the two new

HMW-GS genes from Ae. tauschii AS60 resulted in

products of about 2,500 bp (Fig. 1b, long arrowhead)

for x-type and 2,000 bp for y-type subunit, respec-

tively (Fig. 1b, short arrowhead). Sequences of the

two DNA fragments for 1Dx3.1t and 1Dx11*t were

2,514 and 1,968 bp in length, respectively. Their

putative full encoding sequences were comprised of

836 and 654 amino acids. The authenticity of the

cloned x-type (Fig. 1c) and y-type (Fig. 1d) genes was

confirmed by successful expression of the encoding

regions in E. coli. The sequences of the two novel Glu-

D1 alleles were deposited in Genbank under accession

number HM124446 and HM124445.

Comparison of genes in AS60 with others

in Glu-D1

Sequence analysis indicated that 1Dx3.1t had similar

primary structure to other known D-genome encoded

x-type alleles. It contained four domains: a signal

peptide (21 amino acids), a conserved N-terminal

domain (89 amino acids), a C-terminal domain (42

amino acids), and a repetitive domain made up by

repetitive motifs of tripeptide (GQQ), hexpeptide

(PGQGQQ), and penapeptide (GYYPTSPQQ). Com-

pared to previously reported Glu-D1 alleles Dtx1.5

(AY594355), 1Dx1.5t (EF546438), 1Dx2t (AF48048

5), 1Dx2.1 (AY517724), 1Dx2.1t (AF480486), 1Dx4t

(DQ307383), 1Dx50 (HM050419), and 1Dx5.2t

(DQ307384), 1Dx3.1t had three unique SNPs at the

785, 1,712, and 1,842 bp positions in the repetitive

domain. Nucleotide G existed in 1Dx3.1t, while A

existed in others at the three positions. The former two

SNPs resulted in amino acid substitution (glutamine

? arginine).

1Dy11*t also showed similar primary structure to

other y-type alleles at the Glu-D1 locus. Compared to

1Dy (AJ306974), Dy8.1t (FJ3998041), 1Dy9.5 (FJ00

8134), 1Dy10.4t (FJ499504), 1Dy10.5*t (FJ499502),

and 1Dy10.5t (FJ499503), five unique SNPs were found

in 1Dy11*t at positions of 121 bp (G ? A, gluta-

mate ? lysine), 282 bp (G ? A), 857 bp (A ? G,

glutamine ? arginine), 1,431 bp (A ? C, glutamine ?
histidine), and 1,919 bp (C ? T, threonine ?
isoleucine).

Phylogenetic relationships of HMW-GS genes

based on neighbor-joining trees

A neighbor-joining tree was constructed with com-

plete amino acid sequences of 12 x-type and 11 y-type

genes in loci Glu-A1, Glu-B1, and Glu-D1. In the tree,

x- and y-type alleles were apparently divided into two

lineages (Fig. 2a). Obviously, x- and y-type alleles

were diverged from an ancestral sequence prior to the

separation of the wheat genomes A, B, and D (Shewry

et al. 1989). 1Dx3.1t and 1Dy11*t in AS60 were

clustered together with the previously reported x-type

and y-type alleles in locus Glu-D1, respectively.

In order to further investigate evolution of the Glu-

D1 alleles, we constructed a neighbor-joining tree

using complete coding sequences of 48 alleles in locus

Glu-D1, including 24 x-type and 24 y-type alleles

(Fig. 2b). Of them, 13 x-type and 16 y-type alleles

were from Ae. tauschii, one y-type from species Ae.

cylindrica, and the others from common wheat. Again,

the x-type and y-type alleles were apparently divided

into two clades. The x-type alleles were further

separated into two clusters, which comprised of

1Dx1.1t at the bottom and the other 23 at the top.

1Dx1.1t is the largest HMW-GS allele reported so far

in this locus of Ae. tauschii (Fang et al. 2009).

The y-type alleles formed four clades. The y-type

alleles of the common wheat cultivars and Ae. tauschii

fell into the same two clades (III and IV). 1Dy10 and

1Dy12 widely exist in current common wheat lines.

1Dy10 and five Dy genes from Ae. tauschii (1Dy12t,

Dy12t, 1Dy12.1t, 1Dy12.2t, and 1Dy12.1*t) formed

clade III. 1Dy12 was clustered in clade IV with five

common wheat alleles (1Dy12.3, 1Dy11, 1Dy12.2*,

1Dy12*, and 1Dy10.1) and two Ae. tauschii alleles

(Dty10 and 1Dy10.1t) (Fig. 2b). A follow-up MJ

network analysis also agreed with this result (Fig. 3b).

It seems that that 1Dy10 and 1Dy12 were derived from

different Ae. tauschii accessions, thus supporting the

hypothesis that more than one Ae. tauschii genotypes

have been involved in the polyploidization process

during the speciation of common wheat (Dvorák et al.

1998; Talbert et al. 1998; Lelley et al. 2000; Caldwell

et al. 2004; Giles and Brown 2006; Zhang et al. 2008;

Fang et al. 2009).

The y-type gene 1Dy11*t in AS60 was clustered in

clade II together with 1Dy10.4t, 1Dy10.5t, 1Dy10.5*t,

1Dy9.5, Dy12.4t, and Dy8.1t from Ae. tauschii, and

1Dy (AJ306974) from Ae. cylindrica (Fig. 2b). None
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of the common wheat alleles was included in this

cluster. This result supported the result by Caldwell

et al. (2004) that different Ae. tauschii accessions

contributed the D genome to common wheat and Ae.

cylindrica.

Gene genealogies based on network analysis

For genealogy analysis, MJ networks were constructed

with nucleotide sequences of signal peptide, N-termi-

nal domain, and C-terminal domain of 24 1Dx

(Fig. 3a) and 24 1Dy alleles (Fig. 3b). MJ network is

an effective method to study gene genealogies (Cas-

sens et al. 2005; Kilian et al. 2007). The network

placed the six alleles 1Dx3.1t (this study), 1Dx1.5*

(Guo et al. 2010), 1Dx2.2* (Wan et al. 2005), 1Dx50

(Feng et al. 2011), 1Dx2.6 (Cong et al. 2007), and

1Dx2.8 (Terasawa et al. 2009) at a principal node

(Fig. 3a), while the other alleles radiated in a star-like

phylogeny from the principal node. The six alleles

might represent the ancestral sequences. It is interest-

ing that 1Dx3.1t was among the six alleles and the

other five all were rare and only detected in Asia

common wheat lines. The sequence of 1Dx2.8,

detected in an Afghan landrace, is the shortest of the

known Dx-type alleles (Terasawa et al. 2009), while

1Dx2.6, observed in some Xinjiang landraces in

China, is the longest (Cong et al. 2007). Chinese

common wheat line W958 from Sichuan has 1Dx50

(Feng et al. 2011) and Jiuquanjinbaoyin from Gansu

contains 1Dx1.5* (Guo et al. 2010). Wheat line

MG315, which has 1Dx2.2*, was also collected from

China (Personal communication with professor Rena-

to D’Ovidio of Universita’ degli Studi della Tuscia).

These six putative ancestral alleles were then

compared with each other for sequence polymor-

phism, and found to be identical in the signal peptide,

N-terminal domain, and C-terminal domain. The only

differences appeared in the repetitive domain, includ-

ing SNPs and size variations due to insertions/

deletions (Fig. 4). 1Dx2.6, 1Dx2.2*, 1Dx50, and

1Dx1.5* contained a same indel with 27 bp at position

of 1,847 bp. 1Dx2.8 contained two indels with 261 and

585 bp. Both 1Dx1.5* and 1Dx3.1t contained two

indels with 18 bp and 576 bp. The sequence similarity

suggested that an Ae. tauschii accession (such as

Fig. 2 a The neighbor-joining tree based on complete amino

acid sequences of 12 x-type and 11 y-type alleles in loci Glu-A1,

Glu-B1, and Glu-D1. b The neighbor-joining tree based on

complete coding sequences of 24 x-type and 24 y-type alleles in

locus Glu-D1. The bootstrap values are indicated near nodes.

GenBank accession numbers are in brackets after the alleles.

Genbank accession number HM124446 and HM124445 for

1Dx3.1t and 1Dx11*t from this study, others from previously

reported references (Mackie et al. 1996; Yan et al. 2002, 2004,

2008; Hassani et al. 2005; Lu and Lu 2005; Wan et al. 2005;

Zhang et al. 2006, 2008, 2009; An et al. 2009; Fang et al. 2009;

Su et al. 2009; Chang et al. 2010)
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AS60) that contains allele 1Dx3.1t or a closely related

allele might have also involved in the origin of

common wheat that has allele 1Dx1.5*. The neighbor-

joining tree based on complete amino acid sequences

also supported this hypothesis (Fig. 5).

Aegilops tauschii was classified into two subspe-

cies, i.e. ssp. tauschii with elongated cylindrical

spikes and strangulata (Eig) Tzvel. with markedly

moniliform spikes (Hammer 1980). However, mor-

phologically intermediate forms between the two

typical subspecies had been also observed (Matsuoka

et al. 2009 and cited references). Previous results

indicated that ssp. strangulata or intermediate form

was the D-genome donor of common wheat (Dvorák

et al. 1998; Huang et al. 2011). However, accession

AS60 used in this study belonged to typical ssp.

Fig. 3 Median-joining networks based on nucleic acid

sequences of signal peptide, N-terminal domain, and C-terminal

domain of 24 1Dx (a) and 24 1Dy alleles (b), respectively. mv

denotes a hypothetical haplogroup not found in this study.

Alleles in network are represented by circles. Numbers above

line are mutation sites between the two linked alleles

Fig. 4 Comparison of nucleic sequences among six ancestral

x-type alleles in locus Glu-D1 that share identical signal (S),

N-terminal domain (N), and C-terminal domain (C). Variations

such as SNPs and indels occurred in the repetitive domain (R).

Different letters represent SNPs. Numbers on dash dot lines
show the size of deletions
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tauschii (Huang et al. 2011). Present results suggested

the possibility that ssp. tauschii was also involved in

the evolution of common wheat.

Unlike 1Dx alleles, our analysis did not reveal any

apparent principal node among the 24 1Dy alleles

(Fig. 3b). This result suggested that Dx-type and

Dy-type genes have evolved independently and Dy

genes had faster evolutionary rates than Dx genes.

This hypothesis was supported by estimated nucleo-

tide polymorphism (Table 1). Nucleotide polymor-

phic parameters among Glu-1Dy alleles were higher

than those among Glu-1Dx alleles except for hw in Ae.

tauschii. The higher hw of Glu-1Dx than Glu-1Dy may

be from the large differentiation contributed by allele

1Dx1.1t (Fig. 2b and 3a; Fang et al. 2009). Generally,

nucleotide polymorphism in Ae. tauschii is higher than

T. aestivum.
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