Iron-catalyzed three-component tandem process: a novel and convenient synthetic route to quinoline-2,4-dicarboxylates from arylamines, glyoxylic esters, and α-ketoesters

Wei Wei ${ }^{\text {a,b }}$, Jiangwei Wen ${ }^{\text {a,b }}$, Daoshan Yang ${ }^{\mathrm{a}, \mathrm{b}}$, Xuejun Sun ${ }^{\mathrm{a}, \mathrm{b}}$, Jinmao You ${ }^{\text {a,b,c, },}$, Yourui Suo ${ }^{\text {c }}$, Hua Wang ${ }^{\text {a,b,* }}$
${ }^{\text {a }}$ The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong, China
${ }^{\mathrm{b}}$ Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong, China
${ }^{\text {c Key Laboratory of Evolution and Adaptation of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, }}$ China

A R T I C L E I N F O

Article history:

Received 7 July 2013
Received in revised form 24 September 2013
Accepted 10 October 2013
Available online 17 October 2013

Keywords:

Iron catalysis
Tandem reaction
Arylamines
α-Ketoesters
Glyoxylic esters
Quinoline-2,4-dicarboxylates

Abstract

A new and convenient iron-catalyzed three-component tandem reaction of aromatic amines, glyoxylic esters, and α-ketoesters has been developed for the synthesis of quinoline-2,4-dicarboxylates under mild conditions. The present protocol, which utilizes cheap catalysts, readily-available starting materials and mild reaction conditions, provides an attractive approach to a series of functionalized quinoline derivatives with promising unique pharmaceutical, biological, and fluorescence-labeling applications.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Quinolines and their derivatives are ubiquitous in various natural products, and many of them have been widely recognized as important structural motifs to design tremendous synthetic drug candidates since they possess a broad spectrum of biological properties of antimalarials, antibacterial, antipsychotic activity, antiinflammatory, anticancer, anti-HIV, and antituberculosis, etc. ${ }^{1}$ In particular, quinoline-2,4-dicarboxylate derivatives are of great importance as pharmaceutical and synthetic materials, because their carboxyl groups could additionally play a pivotal role in endowing the unique bioactivities of quinolines. ${ }^{2}$ For example, quinoline 2,4-dicarboxylic acids (QDCs) I and II can be used as inhibitors against the vesicular glutamate transport (VGLUT) protein (Fig. 1). ${ }^{2 \mathrm{a}, \mathrm{b}}$ Compounds III were discovered to be promising moieties of new fluorescent tags for monitoring of biomolecules (Fig. 1). ${ }^{3}$

Generally, quinoline-2,4-dicarboxylates were synthesized by a modified Doebner-von Miller pathway prepared by the

[^0]condensation of dimethyl ketoglutaconate (DKG) with substituted anilines. ${ }^{2-4}$ Alternatively, the selective conjugate reaction of the preformed N-arylphosphazenes to α, β-unsaturated carbonyl compounds has also been developed. ${ }^{5}$ However, both methods suffer from some disadvantages, such as the need of extra steps to prepare active starting materials, a large amount of promoters, the low yield. Therefore, the development of simple, convenient, efficient and, especially, environmentally friendly synthetic methodologies for the construction of quinoline-2,4-dicarboxylates still remains highly desirable.

1

X= peptide
II

$\mathrm{R}=\mathrm{NHMe} \mathrm{N}(\mathrm{Me})_{2} ; \mathrm{N}(\mathrm{Et})_{2}$
III

Fig. 1. Structures of some biologically important quinoline-2,4-dicarboxylate derivatives.

Recently, iron salts as an alternative and promising transitionmetal catalysts, have drawn much attention for various organic transformations and synthesis of heterocyclic compounds due to their cost-effectiveness, ready availability, sustainability, and environmentally friendly properties. ${ }^{6,7}$ Over the past few years, several examples of iron-catalyzed coupling reactions for the construction of quinoline compounds have been reported. ${ }^{8-11}$ For example, Fan et al. described an iron-catalyzed A^{3}-reaction of aldehydes, amines, and alkynes via a tandem process for preparing 2,4-disubstituted quinolines. ${ }^{9}$ Li et al. reported an iron-catalyzed cascade reaction of ynone with o-aminoaryl compounds leading to 3-carbonyl quinolines. ${ }^{10}$ Wang et al. presented the ironpromoted ($25 \mathrm{~mol} \%$) tandem reaction of anilines with styrene oxides for the synthesis of 3 -substituted quinolines. ${ }^{11}$ However, quinoline-2,4-dicarboxylates could not be afforded by the reported iron-catalyzed procedures. Herein, we wish to report a new and convenient iron-catalyzed three-component tandem reaction of aromatic amines, glyoxylic esters, and α-ketoesters for the construction of a serial of quinoline-2,4-dicarboxylates under mild conditions (Scheme 1). The present protocol provides an attractive and environmentally friendly approach to a variety of functionalized quinoline-2,4-dicarboxylates in a simple and one-pot procedure.

Scheme 1. Iron-catalyzed three-component reaction for the synthesis of quinoline-2,4-dicarboxylates.

2. Results and discussion

Initially, the reaction for the synthesis of quinoline-2,4dicarboxylate 4a from p-anisidine 1a, ethyl glyoxylate 2a, and methyl pyruvate 3a was conducted to examine the catalytic activity of various simple metal complexes, such as $\mathrm{Cu}, \mathrm{Ag}, \mathrm{Bi}, \mathrm{Pd}, \mathrm{Zn}, \mathrm{Fe}$, and In salts ($10 \mathrm{~mol} \%$) in $\mathrm{CH}_{3} \mathrm{CN}$ at room temperature. As shown in Table 1, among various metal salts screened, FeCl_{3} was found to be the most effective catalyst that afforded the desired product $4 \mathbf{4}$ in 88% yield (Table 1, entry 8). Further optimization showed that FeCl_{3} could still maintain high activity even when the catalyst loading was reduced to $5 \mathrm{~mol} \%$ (Table 1, entry 11). A relatively lower yield was obtained with the further reduction of the catalyst loading (Table 1, entries 12 and 13). No product was observed in the absence

Table 1
Reaction of p-anisidine 1a, ethyl glyoxylate 2a, and methyl pyruvate 3a under various reaction conditions ${ }^{\text {a }}$

 1a		catalyst solvent, air	
Entry	Catalyst (mol \%)	Solvent	Yield (\%) ${ }^{\text {b }}$
1	None	$\mathrm{CH}_{3} \mathrm{CN}$	0
2	$\mathrm{Cu}(\mathrm{OTf})_{2}(10)$	$\mathrm{CH}_{3} \mathrm{CN}$	61
3	AgOTf (10)	$\mathrm{CH}_{3} \mathrm{CN}$	62
4	$\mathrm{Bi}(\mathrm{OTf})_{3}(10)$	$\mathrm{CH}_{3} \mathrm{CN}$	66
5	$\mathrm{Pd}(\mathrm{OAc})_{2}(10)$	$\mathrm{CH}_{3} \mathrm{CN}$	0
6	$\mathrm{Zn}(\mathrm{OTf})_{2}(10)$	$\mathrm{CH}_{3} \mathrm{CN}$	58
7	$\mathrm{CuBr}_{2}(10)$	$\mathrm{CH}_{3} \mathrm{CN}$	68
8	FeCl_{3} (10)	$\mathrm{CH}_{3} \mathrm{CN}$	88
9	$\mathrm{InCl}_{3}(10)$	$\mathrm{CH}_{3} \mathrm{CN}$	80
10	$\mathrm{FeCl}_{3}(15)$	$\mathrm{CH}_{3} \mathrm{CN}$	89

Table 1 (continued)

Entry	Catalyst (mol \%)	Solvent	Yield (\%)
11	$\mathrm{FeCl}_{3}(5)$	$\mathrm{CH}_{3} \mathrm{CN}$	88
12	$\mathrm{FeCl}_{3}(2)$	$\mathrm{CH}_{3} \mathrm{CN}$	79
13	$\mathrm{FeCl}_{3}(1)$	$\mathrm{CH}_{3} \mathrm{CN}$	76
14	$\mathrm{FeCl}_{3}(5)$	Toluene	60
15	$\mathrm{FeCl}_{3}(5)$	1,4 -Dioxane	62
16	$\mathrm{FeCl}_{3}(5)$	DME	64
17	$\mathrm{FeCl}_{3}(5)$	DMSO	40
18	$\mathrm{FeCl}_{3}(5)$	$\mathrm{CH}_{2} \mathrm{Cl} l_{2}$	65
19	$\mathrm{FeCl}_{3}(5)$	EtOAc	45
20	$\mathrm{FeCl}_{3}(5)$	THF	60
21	$\mathrm{FeCl}_{3}(5)$	CH 3 OH	40
22	$\mathrm{FeCl}_{3}(5)$	CH 3 CN	72^{c}

${ }^{\text {a }}$ Reaction conditions: $\mathbf{1 a}(0.5 \mathrm{mmol})$, $\mathbf{2 a}(0.55 \mathrm{mmol})$, $\mathbf{3 a}(0.75 \mathrm{mmol})$, catalyst ($1-10 \mathrm{~mol} \%$), $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$, room temperature, under air, 30 h .
${ }^{\mathrm{b}}$ Isolated yields based on $\mathbf{1 a}$.
c $60{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$.
of catalyst (Table 1 , entry 1). The screening of a range of solvents using FeCl_{3} as catalyst demonstrated that $\mathrm{CH}_{3} \mathrm{CN}$ was the optimal reaction medium while others, such as toluene, 1,4-dioxane, DME, DMSO, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, EtOAc, THF, and $\mathrm{CH}_{3} \mathrm{OH}$ gave lower yields of the quinolines (entries 14-21). Moreover, the reaction was accelerated when the model reaction was carried out under $60^{\circ} \mathrm{C}$, but the yield was not improved as expected (Table 1, entry 22).

Under the optimized conditions, the scope and generality of this process were tested with respect to various aromatic amines, and a series of substituted quinoline-2,4-dicarboxylates were obtained in moderate to good yields (Table 2). Both electron-rich and electron-withdrawing aromatic amines were suitable for this protocol. In general, aromatic amines containing electron-rich groups showed the better activities than those bearing electronwithdrawing groups ($\mathbf{4 a}-\mathbf{l}$). Long chain alkyl substituted aromatic amine, such as 4-butylaniline and cycloalkyl substituted aromatic amine, such as 4 -cyclohexylaniline could be transformed into the desired products in 72% and 71% yields, respectively, ($\mathbf{4 e}$ and \mathbf{f}). It is noteworthy that a wide range of functionalities, such as halogen, hydroxyl, cyano, and carbonyl groups were compatible with this reaction leading to the products $\mathbf{4 g}-\mathbf{l}$, which could be used for further transformations. Furthermore, ($2 S, 5 R$)-2-isopropyl-5methylcyclohexyl 2-oxoacetate was also compatible with this reaction, affording the desired product $\mathbf{4 n}$ in 62% yield. In addition, $\alpha-$ alkyl substituted ketoester, such as methyl 2-oxo-4phenylbutanoate was tolerated in this process, but a relatively low yield was obtained presumably because of the steric effect ($\mathbf{4 0}$).

To examine the feasibility of a large-scale reaction, the reaction of p-anisidine 1a, ethyl glyoxylate 2a, and methyl pyruvate 3a was investigated. The reaction could afford 2.36 g of $\mathbf{4 a}$ in 82% yield without any significant loss of its efficiency (Scheme 2). Therefore, this protocol could be used as a practical method to synthesize the precursors of some important bioactive molecules, such as quinoline 2,4-dicarboxylic acid (QDC), which can be employed as inhibitor against the vesicular glutamate transport (VGLUT). ${ }^{2 a, b}$

To gain further insights into this reaction, several control experiments were conducted (Schemes 3-6). When the reaction of ethyl glyoxylate $\mathbf{2 a}$ with methyl pyruvate $\mathbf{3 a}$ was performed in the standard conditions, only a trace amount of $\mathbf{1 0}$ was detected (Scheme 3), suggesting that this reaction mechanism might be

Table 2
Iron-catalyzed three-component tandem reaction of aromatic amines, glyoxylic esters, and α-ketoesters ${ }^{a}$

${ }^{\text {a }}$ Reaction conditions: arylamine (0.5 mmol), ethyl glyoxylate (0.55 mmol), α-ketoesters (0.75 mmol), $\mathrm{FeCl}_{3}(5 \mathrm{~mol} \%), \mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$, room temperature, under air, 30-36h.
${ }^{\mathrm{b}}$ Isolated yields based on arylamine.
${ }^{\text {c }} 60^{\circ} \mathrm{C}, 36 \mathrm{~h}$.
${ }^{\mathrm{d}} \mathrm{FeCl}_{3}(10 \mathrm{~mol} \%), 60^{\circ} \mathrm{C}, 36 \mathrm{~h}$.
different from the modified Doebner-von Miller reaction. ${ }^{2}$ On the other hand, imine 5a could be isolated in 92% yield when p methoxyaniline 1a reacted with ethyl glyoxylate $\mathbf{2 a}$ in the absence of catalyst (Scheme 4). Furthermore, treatment of $\mathbf{5 a}$ with methyl pyruvate 3a under the standard procedure led to the formation of the desired product 4a in 86% yield (Scheme 5). Nevertheless, the
desired product 4a was not detected when the reaction of $\mathbf{5 a}$ with methyl pyruvate 3a was conducted in absence of catalyst (Scheme 6). The above results indicated that imine complex might be the key intermediate and FeCl_{3} played an important role in the formation of quinoline-2,4-dicarboxylates.Based on the above experimental results and previous studies, ${ }^{9,12,13}$ a postulated reaction pathway was proposed as shown in Scheme 7 . Firstly, aromatic amine 1 reacted with ethyl glyoxylate 2 to generate the imine intermediate 5 , which was followed by addition of the enolate $\mathbf{6}$ that quickly formed from the tautomerization of ketoester in the presence of iron salts, and produced intermediate 7. ${ }^{12}$ Subsequently, the nucleophilic attack of phenyl ring to keto group led to the formation of intermediate 8. Next, water elimination and following proton shift with help of chloride ion would produce the 1,2-dihydroquinolines intermediate $9 .{ }^{12 b, 13}$ Finally, the dihydroquinoline intermediate 9 was oxidized by air oxygen to give the desired quinoline $4{ }^{13}$

Scheme 3. The reaction of 2a with 3a in the standard conditions.

Scheme 4. The reaction of $\mathbf{1 a}$ with $\mathbf{2 a}$ in the absence of catalyst.

Scheme 5. The reaction of imine $\mathbf{5 a}$ with $\mathbf{3 a}$ in the presence of $\mathrm{FeCl}_{3}(5 \mathrm{~mol} \%)$.

Scheme 6. The reaction of imine $\mathbf{5 a}$ with $\mathbf{3 a}$ in the absence of catalyst.

Scheme 7. Postulated reaction pathway.

3. Conclusions

In summary, a simple and convenient method has been developed for the preparation of substituted quinoline-2,4dicarboxylates via a new one-pot three-component tandem process of aromatic amines, glyoxylic esters, and α-ketoesters by employing cheap iron salts as the catalysts. The present protocol, which possesses some advantages of cheap catalysts, readilyavailable starting materials, and mild reaction conditions over the common methods, paves a new way towards the synthesis of versatile quinoline building blocks potentially for constructing a variety of drug candidates, biofunctional molecules and fluorescent tags. The detailed scope, mechanism, and synthetic application of this reaction are under investigation.

4. Experimental section

4.1. General

All commercially available reagent grade chemicals were purchased from Aldrich, Acros and Alfa Aesar Chemical Company and used as received without further purification unless otherwise stated. All solvents were dried according to standard procedures. The NMR data were collected in CDCl_{3} with TMS as internal standard on a Bruker Avance 600 spectrometer ($600 \mathrm{MHz}{ }^{1} \mathrm{H}, 150 \mathrm{MHz}$ ${ }^{13} \mathrm{C}$) at room temperature. The following abbreviations were used to express the multiplicities: $s=$ singlet; $d=$ doublet; $t=$ triplet; $\mathrm{q}=$ quartet; quint=quintet; $\mathrm{m}=$ multiplet; $\mathrm{br}=$ broad, and the chemical shifts (δ) were described in parts per million and J values were given in Hertz. High-resolution mass spectra was obtained in a Bruker Daltonics Data Analysis 3.2. All reactions were carried out in oven-dried glasswares with magnetic stirring and monitored by thin-layer chromatography on TLC plates. The products were purified by flash column chromatography on silica gel (200-300 mesh).

4.2. Experimental procedures

4.2.1. General procedures for preparation of quinoline-2,4dicarboxylates 4. The reaction mixture of arylamine $\mathbf{1}(0.5 \mathrm{mmol})$, ethyl glyoxylate $\mathbf{2}(0.55 \mathrm{mmol})$, α-ketoesters $\mathbf{3}(0.75 \mathrm{mmol}), \mathrm{FeCl}_{3}$ ($5 \mathrm{~mol} \%$) and $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL}$) was stirred at room temperature or $60^{\circ} \mathrm{C}$ for the indicated time until complete consumption of the starting material, which was monitored by TLC analysis ($30-36 \mathrm{~h}$). Then the solvents were removed by rotary evaporation to provide crude products. The residue was purified by flash chromatography on silica gel to give the desired product 4.
4.2.2. Reaction of $\mathbf{1 a}$ and $2 \boldsymbol{2 a}$ in the absence of catalyst. The reaction mixture of p-methoxyaniline $\mathbf{1 a}(1 \mathrm{mmol})$, ethyl glyoxylate 2a (1.1 mmol), and $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ was stirred at room temperature for 30 min . Then the solvents were removed by rotary evaporation to provide crude products. The residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, 8:1) to give the desired imine $\mathbf{5 a}$ as a yellow oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=1.40(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 4.41(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H})$.
4.2.3. Reaction of imine $\mathbf{5 a}$ and $\mathbf{3 a}$ in the presence of catalyst. The isolated $\mathbf{5 a}(0.5 \mathrm{mmol})$ was immediately added into a mixture of methyl pyruvate $\mathbf{3 a}(0.75 \mathrm{mmol}), \mathrm{FeCl}_{3}(5 \mathrm{~mol} \%)$, and $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$. The reaction mixture was stirred at room temperature for 30 h . After the completion of the reaction, the solvents were removed by rotary evaporation to provide crude products. Then the residue was
purified by flash chromatography on silica gel (petroleum ether/ ethyl acetate, $7: 1$) to give the desired product $\mathbf{4 a}$ in 86% yield.
4.2.4. Reaction of imine 5a and $\mathbf{3 a}$ in the absence of catalyst. The reaction mixture of imine $\mathbf{5 a}$ (0.5 mmol), methyl pyruvate 3a (0.75 mmol), and $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ was stirred at room temperature for 30 h . The solution was concentrated in vacuum, no desired product was detected.

Compound $\mathbf{4 a}$ was obtained in 88% yield according to the general procedure (rt, 30 h). TLC (n-hexane/EtOAc, $3: 1 \mathrm{v} / \mathrm{v}$): $R_{f}=0.36$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.48(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 4.04(\mathrm{~s}$, $3 \mathrm{H}), 4.55(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{dd}, J=2.7,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.22$ (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.68(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.4,52.7,55.7,62.3,103.0,123.1,123.8,128.3$, 132.8, 133.1, 145.0, 145.2, 161.0, 165.0, 166.3; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{5} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$, 312.0842; found, 312.0837.

Compound $\mathbf{4 b}$ was obtained in 80% yield according to the general procedure (rt, 30 h). TLC (n-hexane/EtOAc, $3: 1 \mathrm{v} / \mathrm{v}$): $R_{f}=0.39 ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.48$ (t, J=7.1 Hz, 3H), 2.59 ($\mathrm{s}, 3 \mathrm{H}$), 4.05 (s , $3 \mathrm{H}), 4.56(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=1.5,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.57(\mathrm{~s}, 1 \mathrm{H}), 8.61(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.4,22.3,52.8,62.4,122.3,124.2,126.3,131.0,132.8,135.1,141.0$, 146.9, 147.4, 164.9, 166.3; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$, 296.0893; found, 296.0901.

Compound $\mathbf{4 c}$ was obtained in 86% yield according to the general procedure (rt, 30 h). TLC (n-hexane/EtOAc, $3: 1 \mathrm{v} / \mathrm{v}$): $R_{f}=0.36 ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.47-1.51(\mathrm{~m}, 6 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 4.22(\mathrm{q}$, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.55(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.44$ (d, $J=2.8,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.21$ (d, J=9.2 Hz, 1H), $8.24(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.66(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.4,14.6,52.7,62.2,64.1,103.6,123.0,124.0$, 128.4, 132.8, 133.1, 144.8, 145.1, 160.4, 165.0, 166.3; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$, 326.0999; found, 326.0993.

Compound $4 d$ was obtained in 60% yield according to the general procedure (rt, 30 h). TLC (n-hexane/EtOAc, $3: 1 \mathrm{v} / \mathrm{v}$): $R_{f}=0.31 ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.51(\mathrm{t}, \mathrm{J}=10.6 \mathrm{~Hz}, 3 \mathrm{H}), 4.07(\mathrm{~s}, 6 \mathrm{H}), 4.11$ (s, 3H), $4.58(\mathrm{q}, \mathrm{J}=10.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H}), 8.36(\mathrm{~s}, 1 \mathrm{H}), 8.64(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.4,52.7,56.3,56.3,62.3,103.0$, 109.3, 121.1, 123.5, 132.5, 145.2, 146.6, 153.0, 165.1, 166.5; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{6} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$, 342.0954; found, 342.0958.

Compound $\mathbf{4 e}$ was obtained in 72% yield according to the general procedure (rt, 30 h). TLC (n-hexane/EtOAc, $3: 1 \mathrm{v} / \mathrm{v}$): $R_{f}=0.40 ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.95(\mathrm{t}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.38-1.44(\mathrm{~m}, 2 \mathrm{H})$, $1.49(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.68-1.75(\mathrm{~m}, 2 \mathrm{H}), 2.85(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.06$ (s, 3H), 4.57 (q, J=7.1 Hz, 2H), 7.68 (dd, $J=1.7,8.7 \mathrm{~Hz}, 1 \mathrm{H}$), 8.27 (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.60(\mathrm{~s}, 1 \mathrm{H}), 8.63(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=13.9,14.4,22.4,33.2,36.3,52.8,62.4,122.3,123.7,126.4,131.1$, 132.1, 135.1, 145.8, 146.9, 147.6, 165.0, 166.3; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$, 338.1363; found, 338.1373.

Compound $\mathbf{4 f}$ was obtained in 71% yield according to the general procedure (rt, 30 h). TLC (n-hexane/EtOAc, 3:1 v/v): $R_{f}=0.50 ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.27-1.33(\mathrm{~m}, 1 \mathrm{H}), 1.42-1.46(\mathrm{~m}, 2 \mathrm{H})$, $1.48(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.51-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.89$ (d, $J=12.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.97(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.74-2.78(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{~s}$, 3 H), 4.56 (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.72 (dd, $J=1.6,8.8 \mathrm{~Hz}, 1 \mathrm{H}$), 8.27 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.62(\mathrm{~s}, 1 \mathrm{H}), 8.63(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.4,26.0,26.7,34.1,45.1,52.8,62.4,122.1,122.3,126.5,130.8$, 131.1, 135.2, 146.9, 147.8, 150.7, 165.0, 166.3; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$, 364.1519; found, 364.1518.

Compound $\mathbf{4 g}$ was obtained in 57% yield according to the general procedure ($60{ }^{\circ} \mathrm{C}, 36 \mathrm{~h}$). TLC (n-hexane/EtOAc, $2: 1 \mathrm{v} / \mathrm{v}$): $R_{f}=0.33 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.36(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.97(\mathrm{~s}$, $3 \mathrm{H}), 4.40(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.47$ (dd, $J=2.6,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H})$, 8.09 (d, $J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{~s}, 1 \mathrm{H}), 10.79(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=14.7,53.3,62.0,106.7,122.5,124.2,128.0,133.1,133.2$, 144.1, 144.2, 159.9, 164.8. 166.2; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}_{5}(\mathrm{M}+\mathrm{H})^{+}$, 276.0866; found, 276.0869.

Compound $\mathbf{4 h}$ was obtained in 71% yield according to the general procedure ($60{ }^{\circ} \mathrm{C}, 36 \mathrm{~h}$). TLC (n-hexane/EtOAc, $3: 1 \mathrm{v} / \mathrm{v}$): $R_{f}=0.39$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.49(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 4.06$ (s, $3 \mathrm{H}), 4.57$ (q, J=7.0 Hz, 2H), 7.76 (d, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.28$ (d, J=9.0 Hz, 1H), 8.68 (s, 1H), $8.90(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.3$, 53.0, 62.6, 123.2, 124.7, 126.8, 131.6, 132.7, 134.8, 136.9, 147.1, 148.1, 164.5, 165.6; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{ClNO}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}, 316.0347$; found, 316.0349.

Compound $4 \mathbf{i}$ was obtained in 62% yield according to the general procedure ($60^{\circ} \mathrm{C}, 30 \mathrm{~h}$). TLC (n-hexane/EtOAc, $3: 1 \mathrm{v} / \mathrm{v}$): $R_{f}=0.39 ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.49(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 4.07(\mathrm{~s}, 3 \mathrm{H}), 4.57$ (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{~d}, J=2.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $8.67(\mathrm{~s}, 1 \mathrm{H}), 9.07(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.3,53.0,62.6,123.2,125.5,127.1,128.0,132.7,134.2,134.8,147.3$, 148.2, 164.5, 165.6; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{BrNO}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$, 359.9842; found, 359.9839.

Compound $\mathbf{4 j}$ was obtained in 55% yield according to the general procedure ($60^{\circ} \mathrm{C}, 30 \mathrm{~h}$). TLC (n-hexane/EtOAc, $3: 1 \mathrm{v} / \mathrm{v}$): $R_{f}=0.38$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.49(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 4.06(\mathrm{~s}, 3 \mathrm{H}), 4.57$ (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.61 (dd, $J=2.8,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.36$ (dd, $J=5.6,9.2 \mathrm{~Hz}$, $1 \mathrm{H}), 8.57$ (dd, $J=2.8,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.71$ (s, 1H); ${ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=14.3,52.9,62.5,109.6,109.7,121.0,121.2,123.2,127.5$, 127.6, 133.9, 134.0, 135.0, 146.0, 147.3, 162.1, 163.8, 164.6, 165.7; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{FNO}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}, 300.0643$; found, 300.0654.

Compound $\mathbf{4} \mathbf{k}$ was obtained in 31% yield according to the general procedure ($60{ }^{\circ} \mathrm{C}, 36 \mathrm{~h}$). TLC (n-hexane/EtOAc, $2: 1 \mathrm{v} / \mathrm{v}$): $R_{f}=0.52$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.51(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 4.11(\mathrm{~s}$, 3 H), 4.60 (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.96 (dd, $J=1.6,8.7 \mathrm{~Hz}, 1 \mathrm{H}$), 8.45 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.77(\mathrm{~s}, 1 \mathrm{H}), 9.36(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(150 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=14.3,53.3,63.0,113.9,118.2,123.8,125.5,131.0,132.2$, 132.6, 136.2, 149.3, 150.7, 164.1, 165.1; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}$ $(\mathrm{M}+\mathrm{Na})^{+}$, 307.0689; found, 307.0691.

Compound 41 was obtained in 40% yield according to the general procedure ($60^{\circ} \mathrm{C}, 30 \mathrm{~h}$). TLC (n-hexane/EtOAc, 2:1 v/v): $R_{f}=0.50 ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.51(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.78(\mathrm{~s}, 3 \mathrm{H}), 4.11(\mathrm{~s}$, $3 \mathrm{H}), 4.59(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.37$ (dd, $J=1.7,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.41$ (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.73$ ($\mathrm{s}, 1 \mathrm{H}$), 9.53 ($\mathrm{d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}$) ${ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=14.3,26.8,53.1,62.8,111.8,123.1,127.5,128.4,130.8,131.8$, 137.6, 150.0, 150.3, 164.5, 165.6, 197.5; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{5} \mathrm{Na}$ $(\mathrm{M}+\mathrm{Na})^{+}$, 324.0842; found, 324.0846.

Compound $\mathbf{4 m}$ was obtained in 52% yield according to the general procedure ($\mathrm{rt}, 30 \mathrm{~h}$). TLC (n-hexane/EtOAc, $3: 1 \mathrm{v} / \mathrm{v}$): $R_{f}=0.34 ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.49(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.96(\mathrm{~s}$, $3 \mathrm{H}), 4.56$ (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.14$ (dd, $J=0.9,8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.42-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.57$ (dd, $J=2.7,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.29$ (d, $J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.66(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.4,52.7,62.4,110.3,120.0,120.2,123.1,123.7$, 124.8, 127.7, 130.1, 133.3, 134.3, 145.6, 146.1, 155.5, 159.2, 164.8, 166.0; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}, 374.0999$; found, 374.1004.

Compound $\mathbf{4 n}$ was obtained in 62% yield according to the general procedure (rt, 30 h). TLC (n-hexane/EtOAc, $3: 1 \mathrm{v} / \mathrm{v}$): $R_{f}=0.44 ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.83(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{t}, J=5.3 \mathrm{~Hz}$, $6 \mathrm{H}), 1.14-1.30(\mathrm{~m}, 3 \mathrm{H}), 1.59-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.76(\mathrm{~m}, 3 \mathrm{H})$, 1.99-2.03 (m, 1H), 2.21 (d, J=11.8 Hz, 1H), 3.97 (s, 3H), $4.04(\mathrm{~s}, 3 \mathrm{H})$, $5.07-5.14(\mathrm{~m}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 8.23$ (d, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.62(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=16.5,20.7$, $22.0,23.6,26.5,31.5,34.3,40.8,47.0,52.7,55.7,76.2,102.9,122.9$, 123.6, 128.2, 132.9, 133.1, 145.2, 145.3, 160.9, 164.4, 166.4; HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{5} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}, 422.1943$; found, 422.1946.

Compound $\mathbf{4 0}$ was obtained in 33% yield according to the general procedure ($60^{\circ} \mathrm{C}, 36 \mathrm{~h}$). TLC (n-hexane/EtOAc, $3: 1 \mathrm{v} / \mathrm{v}$): $R_{f}=0.40 ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.17(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $3.92(\mathrm{~s}, 3 \mathrm{H}), 4.27(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.41-4.44(\mathrm{~m}, 4 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H})$, $7.09(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.41$
(dd, $J=2.2,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , CDCl_{3}): $\delta=13.9,14.1,35.5,55.6,62.1,102.1,123.1,126.0,126.3,128.3$, 128.8, 129.0, 131.6, 139.0, 139.7, 141.9, 148.6, 159.8, 166.3, 167.4; HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{NO}_{5}(\mathrm{M}+\mathrm{H})^{+}$, 394.1649; found, 394.1656.

Acknowledgements

This work was supported by the Taishan Scholar Foundation of Shandong Province, the National Natural Science Foundation of China (No. 21375075, 21302109, and 21302110), the Excellent Middle-Aged and Young Scientist Award Foundation of Shandong Province (BS2013YY019), and the Scientific Research Foundation of Qufu Normal University (BSQD 2012020).

References and notes

1. (a) Balasubramanian, M.; Keay, J. G. In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Pergamon: Oxford, UK, 1996; Vol. 5, pp 245-266; (b) Roma, G.; Braccio, M. D.; Grossi, G.; Mattioli, F.; Ghia, M. Eur. J. Med. Chem. 2000, 35, 1021-1035; (c) Vaitilingam, B.; Nayyar, A.; Palde, P. B.; Monga, V.; Jain, R.; Kaur, S.; Singh, P. P. Bioorg. Med. Chem. 2004, 12, 4179-4188; (d) Hazeldine, S.; Polin, L.; Kushner, J.; White, K.; Bouregeois, N. H.; Crantz, B.; Palomino, E.; Corbett, T. H.; Horwitz, J. P. J. Med. Chem. 2002, 45, 3130-3137; (e) Hazeldine, S. T.; Polin, L.; Kushner, J.; White, K.; Corbett, T. H.; Horwitz, J. P. Bioorg. Med. Chem. 2006, 14, 2462-2467; (f) Martirosyan, A. R.; Rahim-Bata, R.; Freeman, A. B.; Clarke, C. D.; Howard, R. L.; Strobl, J. S. Biochem. Pharmacol. 2004, 68, 1729-1738; (g) Perzyna, A.; Klupsch, F.; Houssin, R.; Pommery, N.; Lemoine, A.; Henichart, J. P. Bioorg. Med. Chem. Lett. 2004, 14, 2363-2365; (h) Michael, J. P. Nat. Prod. Rep. 2007, 24, 223-246; (i) Jain, M.; Khan, S. I.; Tekwani, B. L.; Jacob, M. R.; Singh, S.; Singh, P. P.; Jain, R. Bioorg. Med. Chem. 2005, 13, 4458-4466; (j) Lilienkampf, A.; Mao, J.; Wan, B.; Wang, Y.; Franzblau, S. G.; Kozikowski, A. P. J. Med. Chem. 2009, 52, 2109-2118; (k) Chen, S.; Chen, R.; He, M.; Pang, R.; Tan, Z.; Yang, M. Bioorg. Med. Chem. 2009, 17, 1948-1956; (1) Michael, J. P. Nat. Prod. Rep. 1997, 14 , 605-608; (m) Bray, P. G.; Ward, S. A.; O’Neil, P. M. Curr. Top. Microbiol. Immunol. 2005, 295, 3-38.
2. (a) Carrigan, C. N.; Bartlett, R. D.; Esslinger, C. S.; Cybulski, K. A.; Tongcharoensirikul, P.; Bridges, R. J.; Thompson, C. M. J. Med. Chem. 2002, 45, 2260-2276; (b) Carrigan, C. N.; Esslinger, C. S.; Bartlett, R. D.; Bridges, R. J.; Thompson, C. M. Bioorg. Med. Chem. 1999, 9, 2607-2612; (c) Corey, E. J.; Tramontano, A. J. Am. Chem. Soc. 1981, 103, 5599-5600; (d) Suzuki, F.; Nakazato, N.; Oomori, T.; Nakajima, H. Jpn. Kokai Tokkyo Koho 1993, JP 05310702.
3. Laras, Y.; Hugues, V.; Chandrasekaran, Y.; Blanchard-Desce, M.; Acher, F. C.; Pietrancosta, N. J. Org. Chem. 2012, 77, 8294-8302.
4. (a) Itoh, S.; Fukui, Y.; Haranou, S.; Ogino, M.; Komatsu, M.; Ohshiro, Y. J. Org. Chem. 1992, 57, 4452-4457; (b) Carling, R. W.; Leeson, P. D.; Moseley, A. M.; Baker, R.; Foster, A. C.; Grimwood, S.; Kemp, J. A.; Marshall, G. R. J. Med. Chem. 1992, 35, 1942-1953; (c) Itoh, S.; Kato, J.; Inoue, T.; Kitamura, Y.; Komatsu, M.; Ohshiro, Y. Synthesis 1987, 1067-1071.
5. Palacios, F.; Vicario, J.; de los Santos, J. M.; Aparicio, D. Heterocycles 2006, 70, 261-270.
6. Selected reviews, see: (a) Enthaler, S.; Junge, K.; Beller, M. Angew. Chem., Int. Ed. 2008, 47, 3317-3321; (b) Correa, A.; GarcíaMancheno, O.; Bolm, C. Chem. Soc. Rev. 2008, 37, 1108-1117; (c) Sherry, B. D.; Fürstner, A. Acc. Chem. Res. 2008, 41, 1500-1511; (d) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Rev. 2011, 111, 1293-1314; (e) Bolm, C.; Legros, J.; Le Paih, J.; Zani, L. Chem. Rev. 2004, 104, 6217-6254.
7. Selected examples, see: (a) Fürstner, A.; Majima, K.; Martin, R.; Krause, H.; Kattnig, E.; Goddard, R.; Christian, W. L. J. Am. Chem. Soc. 2008, 130, 1992-2004; (b) Chen, M. S.; White, M. C. Science 2007, 318, 783-787; (c) Fürstner, A. Angew. Chem., Int. Ed. 2009, 48, 1364-1367; (d) Buchwald, S. L.; Bolm, C. Angew. Chem., Int. Ed. 2009, 48, 5586-5587; (e) Fan, J.; Gao, L.; Wang, Z. Chem. Commun. 2009, 5021-5023; (f) Fan, J.; Wang, Z. Chem. Commun. 2008, 5381-5383; (g) Mai, S.; Biswas, S.; Jana, U. J. Org. Chem. 2010, 75, 1674-1683.
8. (a) Kumar, S.; Saini, A.; Sandhu, J. S. Synth. Commun. 2007, 37, 4071-4078; (b) Liu, P.; Wang, Z. M.; Lin, J.; Hu, X. M. Eur. J. Org. Chem. 2012, 8, 1583-1589; (c) Patil, S. S.; Patil, S. V.; Bobade, V. D. Synlett 2011, 2379-2383; (d) Richter, H.; Mancheño, O. G. Org. Lett. 2011, 13, 6066-6069.
9. (a) Cao, K.; Zhang, F.-M.; Tu, Y.-Q.; Zhou, X.-T.; Fan, C.-A. Chem.-Eur. J. 2009, 15, 6332-6334; (b) Zhang, Y.; Li, P.; Wang, L. J. Heterocycl. Chem. 2011, 48, 153-157; (c) Yao, C. S.; Qin, B. B.; Zhang, H. H.; Lu, J.; Wang, D. L.; Tu, S. J. RSC Adv. 2012, 2, 3759-3764.
10. Li, H.-F.; Xu, X.-L.; Yang, J.-Y.; Xie, X.; Huang, H.; Li, Y.-Z. Tetrahedron Lett. 2011, 52, 530-533.
11. Zhang, Y. C.; Wang, C. M.; Li, P. H.; Wang, L. Org. Lett. 2012, 14, 2206-2209.
12. (a) Waldmann, H.; Karunakar, G. V.; Kumar, K. Org. Lett. 2008, 10, 2159-2162; (b) Nakajima, T.; Inada, T.; Igarashi, T.; Sekioka, T.; Shimizu, I. Bull. Chem. Soc. Jpn. 2006, 79, 1941-1949.
13. (a) Xiao, F.; Chen, Y.; Liu, Y.; Wang, J. B. Tetrahedron 2008, 64, 2755-2763; (b) Huang, H.; Jiang, H.; Chen, K.; Liu, H. J. Org. Chem. 2009, 74, 5476-5480; (c) Guchhait, S.; Jadeja, K.; Madaan, C. Tetrahedron Lett. 2009, 50, 6861-6865; (d) Li, X. J.; Mao, Z. J.; Wang, Y. G.; Chen, W. X.; Lin, X. F. Tetrahedron 2011, 67, 3858-3862.

[^0]: * Corresponding authors. Tel./fax: +86 537 4458317; e-mail addresses: jmyou6304@163.com (J. You), huawang_qfnu@126.com (H. Wang).

