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1 Introduction

With the rapid development of genomic and chemoge-
nomic projects, many omics data sources for drugs are
publicly available. For example, PubChem database at NCBI
deposits millions of chemical compounds with structure in-
formation;[1] Japan Pharmaceutical Information Center
(JAPIC) database curates more than ten hundreds of key-
words to describe the pharmacological information of com-
pounds;[2] The Anatomical Therapeutic Chemical (ATC) clas-
sification system categorizes drug substances by their ther-
apeutic and chemical characteristics ;[3] The KEGG BRITE,[4]

DrugBank,[5] BRENDA,[6]and SuperTarget[7] deposit high-qual-
ity drug-target interactions; Until Dec. 2012, there are
a total of 4,192 side-effects in the SIDER database from the
chemical structures of 996 approved drugs;[8] From Drug-
Bank,[5] and Online Mendelian Inheritance in Man (OMIM),[9]

the abundant drug�disease associations can be obtained.
Above data sources illustrate drug’s biological function

in the living cell from different levels and different aspects.
For example, chemical structure provides information by
the ‘structure determines function’ paradigm; Compound’s
JAPIC annotation and ATC-code describe drug effect from
molecular function level; Target protein provides the direct
effect at molecular activity level ; Drugs’ side-effects and
their indications hint the unwanted and desired effects at
phenotype level.

Computational drug study aims to learn understandable
rules for drug effects from these data sources. Each data
source is important in some ways and will contribute in dif-
ferent ways in understanding the mechanisms of action of
drugs. Therefore, fusion of multiple data sources from dif-
ferent levels should produce a much more sophisticated
picture of the effects of drugs. One popular strategy is to
explore this fused representation by kernel-based statistical
learning methods,[10] which have the capacity of evade the
sample representation problem in the high-dimensional
space. The trick is to apply a kernel function to replace the
inner-products of samples in the high-dimensional space
and to facilitate the construction and analysis of leaning al-
gorithm.[11] Kernel-based statistical learning methods have

been proven as very useful tools in bioinformatics.[12] One
big advantage is that kernel-based methods provide a prin-
cipled framework in which many types of data sources can
be integrated. For example, Noble et al. applied kernel-
based method to integrate heterogeneous data sources,
such as protein domain, protein�protein interactions (PPIs),
and gene expression data, to infer protein functions.[13]

They also proposed kernel-based methods to predict PPIs
by incorporating protein sequences and GO annotations in-
formation.[14] Those observations motivate us that applying
kernel-based method to elaborate drug effects by integrat-
ing multiple omics data sources.

In the process of drug development, elucidating drug’s
targets, potential ATC-codes, and possible disease connec-
tions are fundamental challenges. Identification of drug�
target interactions is a key area in genomic drug discovery.
Kuhn et al. reviewed some attempts to apply large-scale
computational analyses to predict novel interactions be-
tween drugs and targets from molecular and cellular fea-
tures.[15] Meanwhile, ATC classification system provides the
presentation and comparison of drug consumption statis-
tics at international level (see Report of the WHO Expert
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Committee, 2005), and some efforts have been made to
study the ATC-classification system by computational meth-
ods.[16,17] What’s more, inferring new disease treatments for
existing drugs (drug repositioning) offers the possibility of
faster, safer, low-risk, and low-cost drug development.
Dudley et al. classified recent computational predictions for

drug repositioning in two axes: drug based, where discov-
ery initiates from the chemical perspective, or disease
based, where discovery initiates from the clinical perspec-
tive of disease or its pathology.[18]

The key step to address above challenges is to develop
methods that can correlate and integrate the information
across drugs, proteins, ATC-codes, and diseases from multi-
ple omics data sources. In this review, we survey our recent
efforts in a heterogeneous data integration framework by
developing kernel-based methods to uncover drug-targets,
drug ATC-codes, and drug-disease connections. Roughly,
our framework consists of three steps. First we characterize
drug, protein, ATC-code, and disease by their similarity-
based profiles, and define the kernel function to correlate
drug with target protein, ATC-code, and disease, respective-
ly. Secondly, we train a machine learning model, support
vector machine (SVM), to automatically predict novel drug-
target, drug ATC-code, drug-disease interactions. Finally, we
validate our method by cross-validation on well-established
datasets. We will make sure that each single data source is
predictive in drug-target, drug ATC-code, and drug-disease
interactions prediction. Moreover, by combination of multi-
ple properties, more experimentally observed interactions
can be uncovered. Database search and functional annota-
tion analysis indicate that our new predictions are worthy
of future experimental validation.

2 Methods Overview

2.1 Data Representation

Inferring potential target proteins, ATC-codes, and disease
associations for drugs can be all treated as binary classifica-
tion problem, i.e. , to predict whether a given pair of drug-
protein, drug ATC-code, or drug-disease interacts or not.
We apply kernel method to integrate multiple omics data
sources and introduce SVM-based algorithm to cope with
these prediction tasks. The methodology works in three
phases (Figure 1): (A) Collecting all known drug-target inter-
actions (drug ATC-code or drug-disease interactions) as
gold-standard positives in a bipartite graph. (B) Creating
drug-drug and protein-protein (ATC-code and ATC-code or
disease-disease) similarity metrics based on multiple data
sources. (C) Relating the similarity among drugs and similar-
ity among proteins (similarity scores among ATC-codes or
similarity scores among diseases) by kernel methods, and
apply SVM-based algorithm to predict unknown relation-
ships between drugs and proteins (relationships between
drug and ATC-codes or relationships between drug and dis-
eases).

To implement the SVM-based algorithm, the kernel func-
tion and standard training dataset should be prepared. The
kernel function represents the similarities among the train-
ing samples in some sense.[11] Given two drug-protein pairs
(drug ATC-code or drug-disease pairs), we consider to con-
struct a kernel function to reflect their similarity. Naturally
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we consider the similarity scores among drugs, the similari-
ty scores among proteins (similarity scores among ATC-
codes or diseases), and then integrate the two scores to-
gether. Therefore, we will introduce the ideas to extract the
similarity profile from the available omics data in the fol-
lowing subsections.

2.1.1 Drug Similarity from Molecular Structure, Molecular
Function, Molecular Activity, and Phenotype Data

Molecular structure Data

Under the umbrella that molecular structure determines
function, it is generally believed that drugs with similar
chemical structures carry out common therapeutic func-
tion, thus likely share common target proteins (ATC-codes
or diseases). So here, each drug is first characterized by its
chemical structure similarity profile with other drugs.

The chemical structure similarity between two drugs d
and d’ is calculated in the following two ways. First, it is cal-
culated by SIMCOMP algorithm,[19] which is a graph-based
method for comparing pairwise chemical structures.
Second, it is calculated by weighted cosine correlation of
drugs’ substructure profiles. Specifically, a given drug is
firstly represented by a binary vector x, each element of x is
encoded as 1 or 0, means the presence or absence of corre-
sponding PubChem substructure,[20] and then the similarity
between drug d and d’ is computed by their weighted
cosine correlation coefficient.[21] There are a total of 881
chemical substructures in PubChem database,[1] thus each
drugs’ substructure profile has 881 elements.

Suppose that we have nc drugs in total, a nc � nc matrix
Schem is then constructed to represent chemical structure
similarity. The i-th row of this matrix is the chemical struc-
ture similarity profile for the i-th drug.

Molecular Function Data with Pharmacological Information
as Representative

One abundant information source for drug is the chemical
pharmacological properties and annotations. For example,
JAPIC database[2] contains more than ten hundreds of
unique keywords to describe the compounds pharmaco-
logical information. If there are totally K unique keywords
to annotate the compounds, each compound can be then
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Figure 1. The flowchart of our kernel-based prediction algorithm.
(A) Collecting known interactions between drugs and proteins
(drugs and ATC-codes or drugs and diseases) as gold-standard pos-
itives in a bipartite graph. (B) Creating drug-drug and protein-pro-
tein (ATC-code and ATC-code or disease-disease) similarity metrics.
(C) Relating the similarities among drugs and similarities among
proteins (similarities among ATC-codes or similarities among dis-
eases) by kernel function, and apply SVM-based algorithm to pre-
dict the unknown relationships between drugs and proteins (rela-
tionships between drugs and ATC-codes or relationships between
drugs and diseases).
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encoded as a K-dimensional binary vector y, with its ele-
ment denoting whether the corresponding pharmacologi-
cal keyword is used to annotate the given compound or
not. The pharmacological similarity between drugs d and d’
is evaluated by their weighted cosine correlation coeffi-
cient.[21]

Sphar is then constructed to represent pharmacological
similarity. The i-th row of this matrix is pharmacological
similarity profile for the i-th drug.

Molecular Function Data with Therapeutic Information (ATC-
Code) as Representative

Ontology is a systematic method to describe the properties
of molecules. For example, gene ontology is important to
depict the biological processes, molecular functions, and
subcellular localization for genes. For drugs, the useful data
source for annotations is ATC classification system. In the
ATC system, each drug is annotated by some ATC-codes.
According to the ATC codes, drugs are divided into four-
teen main groups (1st level), and further into one pharma-
cological/therapeutic subgroup (2nd level). The 3rd and 4th
levels are chemical/pharmacological/therapeutic subgroups
and the 5th level is the chemical substance. The drug simi-
larity in its therapeutic sense (ATC-code metric) can be then
calculated as follows:

simther di; d0ð Þ ¼ max
ti2AðdÞ;tj2Aðd0 Þ

sim ti; tj

� �

where A(d) and A(d’) are the sets of ATC-codes annotating
the corresponding drugs, sim(ti,tj) is the similarity between
ATC code ti and tj, which is calculated by a probabilistic
model:[22]

simðti ,tjÞ ¼ wðtiÞwðtjÞexpð�gdðti ,tjÞ�

where sim(ti,tj) is the shortest distance between ATC codes
ti and tj in the hierarchical structure of the ATC classification
system, w(ti) and w(tj) represent the weights of the corre-
sponding ATC codes, and are defined as the inverse of ATC
code frequencies. This means that more emphasis is put on
specific ATC-codes rather than the common ones.[21] g is
a predefined parameter (set to be 0.25 in this study).

Sther is used to denote the resulting drug therapeutic sim-
ilarity matrix. The i-th row of this matrix is therapeutic simi-
larity profile for the i-th drug.

Phenotype Data with Side-Effect as Representative

Drug side-effect is high level phenotype data for drugs to
indicate the malfunction by off-targets. These effects have
been used to infer whether two drugs share a common
target protein.[23] Furthermore, side-effects had been uti-
lized to relate with drug repositioning.[24,25] Similarly, drug

side-effects information can be applied to characterize the
drug by the similar profile concept. Until 2010, in total
there are 1,450 unique side-effects in the SIDER database[8]

for 888 approved drugs. That is, each drug can be repre-
sented by a 1,450 dimensional binary vector, whose ele-
ment is encoded as 1 or 0, means the presence or absence
of corresponding side-effect, respectively. We then define
the drug similarity under their side-effects metric as their
weighted cosine correlation coefficient.[21]

The matrix Sside-effect is then constructed to represent the
drug similarity matrix by their side-effects. The i-th row of
this matrix is the side-effect similarity profile for the i-th
drug.

Molecular Activity Data with Target Protein as Representative

Drugs perform their biological functions inside cell via their
target proteins. High-quality drug-target interactions can
be manually constructed from the KEGG BRITE,[4] Drug-
Bank,[5] BRENDA,[6] and SuperTarget.[7] In addition, the inter-
actions among therapeutic drugs and their targets are well-
studied in the previous studies.[21,26–29] Therefore we intro-
duce target proteins information deposited in DrugBank[5]

and define the drug similarity by their targets. Given two
drugs d and d’, their similarity can be calculated as follows.

siminter di; d0ð Þ ¼ max
gi2TðdÞ;gj2Tðd0 Þ

sim gi; gj

� �

where T(d) and T(d’) are the sets of target proteins for drug
d and d’, sim(gi,gj) is the sequence similarities among the
protein gi and gj defined by a normalized version of Smith�
Waterman scores.[30]

The matrix Sinter is then constructed to represent drug
similarity matrix in target protein sense. The i-th row of this
matrix is the target protein similarity profile for the i-th
drug.

2.1.2 Protein Similarity by Genomic Data

Due to the rapidly developed sequencing techniques to ac-
cumulate large-scale data, we use the amino acid sequence
data to measure protein similarity. The sequence similarities
among the proteins are defined by a normalized version of
Smith-Waterman scores.[30] Suppose that we have ng pro-
teins in total, matrix Sgeno2Rng � ng represents the protein se-
quence similarity matrix. Each row (or column) of this
matrix is the similarity profile for a single protein.

2.1.3 ATC-Code Similarity by Ontology Structure

As we mentioned above, a probabilistic model is intro-
duced to calculate the pairwise similarity sim(ti,tj) between
two ATC-codes (ti and tj) by considering their weighted dis-
tance in the hierarchical structure of the ATC classification
system.[22] As a result, SATC is used to denote the resulting
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drug therapeutic similarity matrix. Suppose that we have nA

ATC codes, a matrix SATC2RnA � nA is constructed. Each row (or
column) of this matrix is the similarity profile for a single
ATC-code.

2.1.4 Disease Similarity by Phenotypes

The disease-disease similarity measures are based on se-
mantic similarity of disease phenotypes according to the
text mining scheme in van Driel et al. ,[31] where over 5000
human phenotypes in OMIM database are collected and
classified to describe diseases. The phenotype similarity
data are accessible through a web interface.[32] If there are
totally P phenotypes to annotate the diseases in OMIM,
each disease can be then encoded as a P-dimensional
binary vector, with its element denoting whether the corre-
sponding phenotype is proper to annotate the given dis-
ease or not. The similarity between two diseases can be
evaluated by defining vector distance. Suppose that we
have ns diseases, a matrix Sdisease 2 Rns � ns is constructed. The
matrix Sdisease, is then applied to represent the disease simi-
larity matrix. Each row (or column) of this matrix is the phe-
notype similarity profile for a single disease.

2.2 The Pairwise Kernel to Integrated Data

With the representation of drugs, proteins, ATC-codes, and
diseases by their similarity profiles, the kernel function with
two drug-protein pair : dAgA and dBgB, two drug ATC-code
pair : dAtA and dBtB , and two drug-disease pairs : dADA and
dBDB can be calculated as Kronecker product kernel :[14,33–35]

KðdAgA, dBgBÞ ¼ ScombðdA,dBÞ � SgenoðgA,gBÞ

KðdAtA, dBtBÞ ¼ ScombðdA,dBÞ � SATCðtA,tBÞ

KðdADA, dBDBÞ ¼ ScombðdA,dBÞ � SdiseaseðDA,DBÞ

where Scomb can be any one of Schem, Sphar, Sther, Sinter, and
Sside-effect or their combination. In this paper, we use “Chem”
to denote the case when Scomb = Schem, “Phar” denotes the
case when Scomb = Sther, “Ther” denotes the case when
Scomb = Sther, “Inter” denotes the case when Scomb = Sinter,
“Side-effect” denotes the case when Scomb = Sside-effect and
“Comb” denotes the case when

Scomb ¼ max ðSchem, Sphar, StherÞ

Scomb ¼ max ðSchem, SinterÞ

Scomb ¼ max ðSchem, Sinter, Sside effectÞ

in drug-target, drug ATC-code, and drug-disease prediction
task, respectively, which requires drug similarity supported
by one or more than one metrics.

Taken together, the rationale behind our kernel function
construction scheme for drug-protein pairs (drug ATC-code
or drug-disease pairs) is that two drug- protein pairs (drug
ATC-code or drug-disease pairs) are similar only when the
corresponding compound and protein (ATC-code or dis-
ease) are simultaneously similar supported by different
kinds of data source. We note that not all the above matri-
ces are positive semi-definite. To remedy this issue, we
need to normalize them into kernel matrix as a pre-process
step.[36]

2.3 SVM-Based Predictors for Drugs

With the above defined pairwise kernel construction
scheme, the drug-protein interactions (drug ATC-code or
drug-disease interactions) prediction task is ready to be for-
malized as a classification problem. We collected publicly
available and known interacting drug-protein pairs (drug
ATC-code or drug-disease pairs) as the positives and the
others as the negatives. Then we simply feed the kernel
function to SVM. One possible problem is the training data
imbalance. Because only a relatively small number of drug-
protein pairs (drug ATC-code or drug-disease pairs) is
known to be interacted, compared to the large amount of
unknown pairs. This situation will make SVM ineffective in
determining the class boundary.[37] To maintain a balance
between training positives and negatives in SVM training
procedure, we usually randomly select a set of negatives
from the unlabelled data (unknown drug-protein pairs
(drug ATC-code or drug-disease pairs)) to make sure that it
has the similar size with the training positives. With the
well-defined kernel function and training dataset, we take
SVM learning scheme to cope with prediction task and
a score can be calculated by SVM algorithm for every drug-
protein pair (drug ATC-code or drug-disease pair). Ranking
all the drug-protein pairs (drug ATC-code or drug-disease
pairs) by their scores, we can assess the predictive accuracy.
Importantly, the well-trained model is ready to predict
novel interactions.

2.4 Benchmark Datasets and SVM Implementation

Before the large-scale predictions, validation in a small and
well-annotated dataset is necessary. The benchmark dataset
to test the performance of predicting drug-target and drug
ATC-code was summarized by Yamanishi et al.[27] This data-
set is widely used as a community standard and contains
four kinds of target proteins, i.e. , enzymes, ion channels
(ICs), G-protein couple receptors (GPCRs), and nuclear re-
ceptors (NRs).[27] The statistics for these drug-target interac-
tion data and more information were summarized by Yama-
nishi et al.[27] The gold standard dataset used to test the
performance of the prediction algorithm for drug reposi-
tioning was summarized by Gottlieb et al.[38] It spans 1,933
associations between 593 drugs taken from DrugBank[5]

and 313 diseases listed in OMIM database.[9]
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We trained the SVM-based predictor by using LibSVM.[39]

In our implementation, the penalty parameter C was opti-
mized by a grid search approach with 3-fold cross-valida-
tion, and the optimal value of C is 10, 1, 1 for drug-target
prediction, drug ATC-code prediction, and drug-disease
prediction, respectively. To evaluate the performance of our
methods, the 10-fold cross-validation was applied. The per-
formance was assessed by receiver operating characteristic
(ROC) curve,[40] which shows the trade-off between the true
positive (correctly predicted interactions) rate (TPR) with re-
spect to the false positive (wrongly predicted interactions)
rate (FPR). Furthermore, the evaluation criterions AUC (area
under the ROC curve),

Accuracy ðAccÞ ¼ TPþ TN
TPþ TNþ FPþ FN

,

Sensitivity ðSnÞ ¼ TP
TPþ FN

,

Specificity ðSpÞ ¼ TN
TNþ FP

,

Precision ðPreÞ ¼ TP
TPþ FP

,

F-measure ¼ 2� Sn� Sp
Snþ Sp

,

and are used to further assess the performance of the pro-
posed predictive methods. Here TP is the number of drug-
protein pairs (drug ATC-code or drug-disease pairs) correct-
ly predicted to interact, while FP is the number of drug-
protein pairs (drug ATC-code or drug-disease pairs) predict-
ed to interact but actually not. And TN is the number of
drug-protein pairs (drug ATC-code or drug-disease pairs) do
not interact and predicted correctly, while FN is the
number of drug-protein pairs (drug ATC-code or drug-dis-
ease pairs) predicted not to interact but actually interact.

3 Results

3.1 Correlation of the Training Data with each Data Source

We collected three data sources to provide descriptions for
drugs in drug-target prediction: chemical structures, phar-
macological and therapeutic information; two data sources
in drug ATC-code prediction: chemical structure and target
proteins; three data sources in drug repositioning predic-
tion: chemical structure, target proteins and side-effects. As
the first step, we want to make sure each data source is
indeed predictive by simple correlation analysis, that is,
drugs with similar structures, pharmacological, or therapeu-
tic effect tend to interact with similar proteins; drugs with
similar structures or target proteins tend to be annotated
with similar ATC-codes; drugs with similar structures, target

proteins or side-effects will cure similar diseases. To show
these, we correlated the similarity obtained from different
data sources with the topology of the known interaction
network, respectively.

We defined the distance of two compounds in the net-
work as the length of their shortest path in network. For
concise, we just plotted the distributions of chemical struc-
ture, pharmacological, and therapeutic similarity scores
with respect to network distance for drugs, respectively, in
Enzyme dataset in Figure 2A (see the distribution in other
three kinds of datasets in Figure 1 in Wang et al.[41]), and
drew the distributions of chemical structure, and target
protein similarity scores with respect to network distance in
Enzyme dataset in Figure 2B (see the distribution in other
three kinds of datasets in Figure S1 in Wang et al.[42]).

Figure 2A showed that, two drugs with higher chemical,
pharmacological, or therapeutic similarities tend to have
shorter network distance. It suggests that drug pairs with
similar chemical structure, pharmacological, or therapeutic
profile may interact with the same target protein. Figure 2B
showed that two drugs sharing common ATC-codes tend
to have larger chemical structure and target protein similar-
ities. It suggests that drug pairs with similar chemical struc-
ture, or target protein tend to be annotated with the
common ATC-codes. Both chemical structures and target
proteins are predictive for ATC-codes annotation.

In drug repositioning study,[36] we also observed that all
chemical structures, target proteins, and side-effects similar-
ities are larger than 0.6 for about 75 % drug pairs with
common diseases. That is, two drugs with larger similarity
scores in all three kinds of metrics tend to share common
diseases. All these results confirm that each data source is
predictive. In addition it shows that correlation analysis pro-
vides some insights and is necessary before data integra-
tion.

3.2 Drug-Target, Drug ATC-Code and Repositioning by
Single Data Source

With the rough picture that each omics data source is
useful in our prediction, we next quantitatively assess the
predictive power for each data source in different predic-
tion tasks: chemical structures, pharmacological and thera-
peutic information in drug-target prediction; chemical
structures and target proteins in drug ATC-code prediction;
chemical structures, target proteins and side-effects in drug
repositioning prediction. The performance were evaluated
and visualized by ROC curves[40] and some evaluation crite-
ria.

Firstly, we showed the effect of each data source in un-
covering the experimentally observed interactions by re-
placing the drug similarity matrix Scomb in pairwise kernel
function with the similarity matrix defined by correspond-
ing data source. For example, when revealing experimental-
ly observed drug-disease interactions, we replaced drug
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similarity matrix Scomb with Schem, Sinter and Sside-effect respec-
tively.

For concise, we just plotted ROCs on NRs dataset in
drug-target prediction in Figure 3A (ROCs on other three

kinds of datasets can be seen in Figure 3 in Wang et al.[41]).
We drew ROCs on NRs dataset in drug ATC-code prediction
in Figure 3B (ROCs on other three kinds of datasets can be
seen in Figure 4 in Wang et al.[42]) ; Figure 3A showed that,
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Figure 2. The correlation of various drug similarity scores with the distance in network on Enzyme dataset. A) The correlation of the chem-
ical structure, pharmacological effect and therapeutic similarity scores with network distance for drugs targeting enzymes. It shows that
drugs tend to have larger similarities when they are much closer in network, that is, drug pairs with similar chemical structure, pharmaco-
logical or therapeutic profile may interact with the same target proteins. B) The distribution of drug similarity scores among the drugs shar-
ing common ATC-codes for enzyme dataset. It shows that two drugs sharing common ATC-codes tend to have larger similarities, that is,
drug pairs with similar chemical structure, or target protein tend to be annotated with the common ATC-codes.
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“Chem” and “Phar” perform almost the same. “Ther” out-
performs “Chem” and “Phar” when FPR is very small. Fig-
ure 3B showed that, chemical structure is useful in ATC-
codes prediction. Moreover, target protein plays a more im-
portant role in predicting drug’s ATC-codes when FPR is
very small. In drug repositioning task,[36] we observed that,
“Chem” obtains the highest TPR when FPR is very small,
and with the number of known interactions increasing,
“Side-effect” reveals more experimentally observed drug-
disease interactions.

The corresponding evaluation criteria when the corre-
sponding F-measure reaches its maximum in discovering
experimentally observed drug-target, drug ATC-code, and
drug repositioning, were also calculated by Wang
et al.[36,41,42] The evaluation criteria showed that each omics
data source will do one’s bit about inferring the potential
rules from the existing interactions. Therefore, combination
of these three data sources should produce a much more
sophisticated picture of the interactions.

3.3 Data Fusion Improves Prediction

In the previous subsection, the usefulness of each data
source was validated in uncovering the experimentally ob-
served properties of drugs. In the following, we checked
the performance for the combination of multiple data sour-
ces in prediction of exist drug-target, drug ATC-code, drug-
disease interactions. The combination method, “Comb” is
evaluated and visualized by ROC curve and evaluation crite-
ria. The results in Wang et al.[36,41,42] showed that “Comb”
could achieve better performance when predicting a small
fraction of known interactions. What’s more, “Comb” out-
performed other methods with the highest AUC, sensitivity,
specificity, and precision, upon the maximal F-measure. All
these results suggest that the predictive performance can
be further improved when multiple data sources are further
incorporated into a single predictive model.
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Figure 3. ROCs obtained by various data sources on NR dataset. A) The ROC curves derived from chemical structure (Chem), pharmacolog-
ical (Phar) and therapeutic (Ther) data source on NR dataset. It shows that “Ther” outperforms “Chem” and “Phar”. B) ROC curves for our
methods using chemical structure (Chem) and target protein (Inter) data sources to predict ATC-codes for drugs interecting with NRs. It
shows that target protein plays a more important role when false positive rate is small.
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3.4 Novel Predictions for Further Validation

On cross-validation, “Comb” displayed its excellent perfor-
mance in predicting experimentally observed interactions.
To test whether it can produce biologically useful predic-
tions, we tested our method on the unknown (non-inter-
acting) drug-protein, drug ATC-code, and drug-disease
pairs. We trained “Comb” on the gold standard positives
and randomly selected gold standard negatives from the
unknown pairs, and tested it on the remaining drug-target,
drug ATC-code, and drug-disease pairs. Our expectation is
that “Comb” can discover the novel interactions besides
the gold standard positives.

For drug-target prediction, we took GPCRs network as an
example for concise. The top ten predicted interactions on
GPCRs dataset were listed in Table 4 in Wang et al.[41] For
each novel prediction, we searched the corresponding evi-
dences in KEGG[4] and DrugBank[5] and found evidence for
eight of the top ten predictions. Furthermore, we noted
that the annotations of two remaining predictions may in-
dicate supporting evidences in biology. Took novel predic-
tion: drug-protein pair of ‘Clozapine’ and ‘dopamine recep-
tor D3’, as an example, the targets of ‘Clozapine’ in Drug-
Bank and KEGG are ‘dopamine receptor D1’, ‘dopamine re-
ceptor D2’, and ‘dopamine receptor D4’. They are in the
same pathway of ‘Neuroactive ligand-receptor interaction’.
While ‘dopamine receptor D3’, also participates in the path-
way of ‘Neuroactive ligand-receptor interaction’, that is,
‘dopamine receptor D3’ may relate with ‘Clozapine’ with
a high probability. The analysis for another drug-protein
pairs of ‘Albuterolcan’ and ‘Chemokine None (C�X�C motif)
receptor 1’ can be found in Wang et al.[41] All these results
suggested that, “comb” could uncover potential drug-pro-
tein interactions, and at least could provide low-resolution
predictive results for further high-resolution experiments
such as docking in drug discovery.

For drug ATC-code prediction, the top five predicted in-
teractions on Enzyme, ICs, GPCRs, and NRs datasets were
listed in Table 2 and Table S2–4 in Wang et al. ,[42] respective-
ly. For each drug and ATC-code pair in these tables, we
checked their annotations from DrugBank[5] and WHOCC
databases.[3] We further checked the explanation of drug
and ATC-codes annotations form Wikipedia,[43] and finally
analysed the reliability of predicted ATC-codes. Database
search, literature search, and functional annotation analysis
support these novel predictions. All these results suggest
that “Comb” could uncover potential ATC-codes of drugs.

For drug repositioning prediction, the novel predicted
drug-disease network was presented in.[36] We specifically
took a close look at the top 100 newly predicted drug-dis-
ease associations. For each novel prediction, we checked
the target proteins form DrugBank,[5] the disease genes
from OMIM,[9] and the corresponding pathway information
from KEGG BRITE.[4] We also checked whether novel predic-
tions appear in current clinical trials.[44] Took the most confi-
dent prediction as an example, target protein ‘Endothelin-

1 receptor’ (EDNRA) for ‘Bosentan’, and the disease gene
‘KCNMB1’ (Kca) for ‘Hypertension, Diastolic, Resistance To’
belong to the same pathway ‘Arachidonic Acid metabo-
lism’. Furthermore, we found that this drug-disease pair ap-
peared in current clinical trials, the ‘ClinicalTrials.gov Identi-
fier’ is NCT00820352. That is, this novel drug-disease pair
may interact in vivo with high probability. Again, database
search, literature search, and functional annotation analysis
support these novel predictions.

4 Discussions and Conclusions

In this review, we described the data integration framework
to computationally study drugs. We first surveyed the avail-
able omics data for drugs from different levels and different
aspects, such as, compound chemical structure, drug phar-
macology and therapeutic annotations, target proteins,
side-effect, drug cured diseases and so on. Then we pro-
posed kernel methods to integrate these data sources. Fi-
nally, we applied the kernel method to infer novel proper-
ties for drugs, including drug-target, drug ATC-code, and
drug repositioning.

These three predictive tasks are similar in procedure.
Specifically, we characterize drug, protein, ATC-code, and
disease by their multiple similarity-based profiles, and
define the kernel function to correlate drug with target
protein, ATC-code, and disease. Then we train SVM-based
classifier to predict novel drug-target, drug ATC-code, and
drug-disease interactions. By cross-validation on well-estab-
lished datasets, we found that each single data source is
predictive. Moreover, more experimentally observed inter-
actions can be uncovered by combination of multiple prop-
erties. In addition, database search and functional annota-
tion analysis indicate that our new predictions are worthy
of future experimental validation. We observed that the
same framework works well in all three applications and
can efficiently predict drug properties in different levels,
i.e. , drug target in molecular level, ATC-code in annotation
level, and disease association in phenotype level. Thus we
demonstrate that our kernel-based integration strategy
serves as a useful tool to study drugs and will promote fur-
ther research in drug discovery.

In addition to the common procedure to integrate data
for the three applications, we also find each predictive task
has its own feature. Thus different biological insights can
be learned for each task and indicate further improve-
ments. In drug-target and ATC-code prediction tasks, drug
with four kinds of target network are used to validate the
performance of our method. One possible concern is that
the good predictive results are due to the homology pro-
teins and similar compounds in our datasets. Our results
showed that the average sequence similarities among the
proteins and chemical similarities among the drugs are less
than 0.2 in our dataset, that is, a redundancy cut-off has
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been applied to reduce the homology bias when these da-
tasets were constructed by Yamanishi et al.[27]

For drug ATC-codes prediction task, improved predictive
performance was obtained by characterizing target protein
sequence similarity. We noted that the improvement was
robust to the definition of protein sequence similarity
under different cut-offs to measure protein sequence simi-
larity. We found that, the AUC score was slightly lower
when using a more stringent cut-off, but not too much.
This was because that most of sequence similarity among
drug target was actually low in our dataset to avoid obvi-
ous results. One advantage to introduce target protein in-
formation is to fully utilize the indirect neighbor informa-
tion in drug-target network. This allowed us to predict
drug ATC-code interactions when this drug has low chemi-
cal similarity and target similarity with its closest drug. We
listed some particularly interesting drug ATC-code predic-
tions with low chemical similarity and target similarity in
Table S6 in Wang et al.[42]

High performance in drug repositioning prediction may
be due to those ‘trivial’ predictions, which are predictions
that are obvious to anyone working on drug development.
For example, those drugs sharing common target are easily
to be predicted to treat the same disease. To address this
issue, we filtered out the potential ‘trivial’ predictions and
the performance was still far better than random classifica-
tion. This result suggested that data integration can reveal
‘non-trivial’ predictions.

When predicting drug ATC-code and drug repositioning,
we integrated target proteins to improve the prediction
performance. The experimental results showed that, com-
paring with chemical structures, the performance was
indeed improved by characterizing drugs in target se-
quence-based similarity. In fact, there are other ways to
define the drug similarity based on their targets. For exam-
ple, the targets closeness in PPI network can be considered
to measure the target protein similarity.[38] In the future, we
will utilize more target protein information by mining the
PPI networks collected from multiple curated databases, in-
cluding HPRD,[45] OPHID[46] and BIND[47] databases.

In drug repositioning prediction task, we only applied
the phenotypic similarity to characterize diseases. However,
with the development of systems biology, studies have
shown that phenotype similar diseases are often caused by
functionally related genes.[48] In addition, many large-scale
studies support the idea that genes sharing similar diseases
are tightly linked in the network.[49,50] Therefore, PPI net-
work is useful to correlate disease with candidate genes.[48]

Apart from gene closeness, function linkages among genes
can be explored in different aspects.[51–53] Thus, it is promis-
ing to incorporate PPI network and other information to
characterize disease.

In our experience, high quality training data is a key to
our three predictive tasks. The training negative dataset is
a formidable challenge to SVM-based algorithm as well as
to other methods. Since the limitation of the available

drug-target, drug ATC-code, drug-disease interactions,
many unknown drug-protein, drug ATC-code, drug-disease
pairs may be actually interacting in prediction task. To ad-
dress this issue, a linear regression model can be intro-
duced to uncover the potential interactions, which can
avoid the bias in selection of negative dataset. The similar
ideas have been used to prioritize the disease genes.[48]

There is still much room to improve the predictive accuracy
along this direction.
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