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Abstract

Little research has been conducted on how to balance plant production and soil respiration (Rs)

under seasonal grazing patterns in alpine meadows. Our results from 2009 to 2012 showed that warm

season grazing (WG) from June to September significantly increased aboveground net primary

production compared with no-grazing (NG), except in 2010, and compared with cold season grazing

(CG) except in 2012, while there were no significant differences between NG and CG except in 2009.

In both WG and CG treatments, grazing increased root biomass at 0–40 cm depth compared with

NG, except in 2011. WG and CG only significantly increased seasonal Rs in 2009. Daily Rs was

mainly affected by soil temperature, which explained 40–49% of the variation in daily Rs for all

grazing treatments. Seasonal Rs from July to September was significantly influenced by soil

temperature and root biomass, which explained 55% of the variation in seasonal Rs for all grazing

treatments. Therefore, relative to NG, regardless of WG and CG, moderate grazing significantly

increased plant production and had little influence on soil respiration in this alpine region.

Keywords: Seasonal and moderate grazing, plant production, soil respiration, alpine meadow,

Tibetan plateau

Introduction

Soil respiration (Rs), which accounts for about 25% of

global carbon dioxide exchange (Bouwmann & Germon,

1998), is a major pathway for carbon to move from

terrestrial ecosystems to the atmosphere, and even small

changes can strongly influence net ecosystem production

(Ryan & Law, 2005). Therefore, understanding of soil

respiration processes is key to our understanding of the

terrestrial carbon cycle (Rustad et al., 2000; Schlesinger &

Andrews, 2000). Grasslands are one of the major vegetation

types, covering about 30% of the world’s land surface.

Grasslands store about 761 Pg C, of which 10.6% is stored

in vegetation and 89.4% in the soil (Atjay et al., 1979).

Grazing, which is the main land use for grasslands

worldwide, can alter carbon emissions from soils to the

atmosphere (Ma et al., 2006; Lin et al., 2009, 2011). Some

research has found that grazing decreases Rs (Bremer et al.,

1998; Cui et al., 2000; Johnson & Matchett, 2001; Jia et al.,

2007), while others have found that grazing increases Rs

(Dong et al., 2000; Frank, 2002; Zhou et al., 2002) or does

not affect it (Lecain et al., 2000; Li et al., 2000). Such

discrepancies between results suggest that the response of Rs

to grazing may vary with grazing intensity, history, climate

and soil types (Lecain et al., 2000; Frank, 2002; Jia et al.,

2005, 2007; Ryan & Law, 2005).

Grassland soils on the Tibetan plateau store a huge amount

of organic carbon (C) (33.52 Pg C in the upper 0.75 m of

topsoil), which is ca. 2.5% of the global soil C pool (SOC) (Ni,

2002; Wang et al., 2002). Thus, minor changes in the SOC

pool could significantly alter atmospheric CO2 concentration

and influence the global climate (Bellamy et al., 2005;

Davidson & Janssens, 2006; Schipper et al., 2007; Cui & Graf,

2009). Although the decomposition of organic carbon is

limited by cool temperature and therefore a large amount of

carbon has accumulated in the soil, long-term overgrazing has

resulted in considerable deterioration and even desertification,

which may release large quantities of C from the ecosystem to

the atmosphere (Wang et al., 2002; Zhao, 2011). However,
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compared with temperate grasslands, few studies have been

conducted on the effects of grazing on Rs in this alpine region

(Cao et al., 2004). A better understanding of C turnover and

fluxes in alpine meadows under grazing can increase our

knowledge of C cycling on the Tibetan plateau and globally.

Society faces the challenge of managing grasslands to

provide food and products, while protecting the natural

resource base. With increasing human population, demands

on grasslands increase, making it even more important to

understand the effects of grazing management on grassland

ecosystems (Wang et al., 2002). Many studies suggest that

moderate grazing in semi-arid grasslands with a long history

of grazing benefit annual net primary productivity and

community composition (Milchunas et al., 1988; Milchunas

& Lauenroth, 1993; Lecain et al., 2000; Wang et al., 2003).

In comparison with other regions, Rs on the Tibetan plateau

is under-studied (Cao et al., 2004; Geng et al., 2012), and

few data are available for alpine meadows. Usually, the

alpine meadow is divided into two seasons for grazing, with

warm season grazing from June to October and cold season

grazing in the other months. This study aimed to understand

the effect of seasonal grazing patterns on Rs and to identify

the main factors affecting Rs under moderate grazing

conditions in the alpine meadow.

Materials and methods

Experimental site

The experimental site is located at the Haibei Alpine

Meadow Ecosystem Research Station (HBAMERS), situated

at latitude 37°370N and longitude 101°120E. The mean

elevation of the valley bottom is 3200 m. A detailed site

description can be found in Zhao and Zhou (1999). Mean

temperature and total rainfall were 6.8, 7.3, 6.8 and 6.8 °C,
and 350.2, 442.6, 339.2 and 325.8 mm during the growing

seasons from 1 May to 31 October in 2009, 2010, 2011 and

2012, respectively (Figure 1). Compared with average rainfall

during the growing seasons in the region (i.e. 450 mm), these

years can be typified as normal in 2010, while there was
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Figure 1 Dynamics of air temperature and precipitation from 2009 to 2012.
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slight drought in 2009, 2011 and 2012 (i.e. 22–28% less than

long-term average rainfall).

The plant community at the experimental site is

dominated by Kobresia humilis, Festuca ovina, Elymus

nutans, Poa pratensis, Carex scabrirostris, Scripus

distigmaticus, Gentiana straminea, Gentiana farreri, Blysmus

sinocompressus and Potentilla nivea. The soil is a clay loam

with an average thickness of 65 cm, is perennially wet and is

classified under Mat Cry-gelic Cambisols according to the

Chinese national soil survey classification system (Chinese

Soil Taxonomy Research Group, 1995). There were no

significant differences among different grazing treatments in

average total organic carbon and total nitrogen

concentrations, which were 7.6% and 0.55% in 0–10 cm

surface soil in 2009.

Grazing experiment

The experimental site is an overgrazed winter grassland, with

all litter removed before the start of the experiment. The

common grazing practice in the region is rotational grazing

with large numbers of sheep (sometimes > 1000) grazing

the grasslands during a few hours in a short-duration,

high-intensity grazing pattern. Thus, the grazing experiment

was designed to simulate this grazing practice. Nine plots of

5 m 9 5 m were fenced in August 2006 and fully randomized

throughout the study site. The grazing experiment started in

2007. Three grazing treatments were used with three replicates

of each of three treatments: no-grazing (i.e. control-NG),

grazing during the warm season (WG) and grazing during the

cold season (CG). In the WG treatment, four adult Tibetan

sheep grazed for ca. 2–4 h in each grazing plot on 8 July and

25 August 2009, 8 July and 23 August 2010, 22 July and 29

August 2011, and 26 July and 24 August 2012. The first

grazing event occurred when canopy height was about

8–10 cm before grazing and ended when canopy height was

about 4–5 cm. The second grazing event in late August may

reduce the initial canopy height by about half. Cold season

grazing events occurred on 13 April and 15 May 2009, 22

April and 15 May 2010, 27 April and 18 May 2011, and 28

April and 15 May 2012, using four Tibetan sheep grazing for

2 h at each grazing event. In both WG and CG treatments,

the sheep were removed from the grazing plots when the

canopy height was reduced to approximately half of the initial

height. The canopy height of the vegetation was measured at

50 points within the plots before and after grazing.

Measurement of aboveground and root biomass

Plant production and utilization were determined using the

cage comparison method (Cook & Stubbendieck, 1986). A

50 9 50 cm cage was set up in each plot and clipped inside

and outside cages after each grazing event. All samples were

oven-dried and weighed to determine plant production and

percentage utilization. Sheep intake was calculated using the

difference between standing biomass inside and outside the

cage after each grazing event. The sum of the standing

biomass at the end of grazing period and sheep intake

during each grazing period was used as aboveground net

primary production (ANPP) (Wang et al., 2012). The annual

cumulative forage utilization rates (i.e. total sheep intake as

a percentage of ANPP was 53, 62, 45 and 48% for the WG

treatment (averaging 52%), and 65, 66, 52, 52% for the CG

treatment (averaging 59%) in 2009, 2010, 2011 and 2012,

respectively. Because overgrazing always results in

degradation of grasslands in China (Wang et al., 2003;

Zhao, 2011), we aimed to determine whether moderate

grazing can sustain the alpine meadows or not and designed

the trials with a forage utilization rate of 50–60% in both

WG and CG treatments, which is considered a moderate

grazing intensity in the region (Zhao, 2011).

Root biomass was measured using a 4-cm-diameter soil-

drill sampler to take 0–10, 10–20 and 20–40 cm soil samples

at the end of August each year. These root samples were

immediately washed, dried at 80 °C, and weighed. Total root

biomass was the sum of the root biomass in each soil layer.

Measurement of soil temperature and soil moisture

Volumetric soil moisture (%) was measured within all

treated plots using Time Domain Reflectometry (TDR)

(CS615) (Campbell Scientific, Inc.) with four probes (7 cm in

length). Soil temperatures at 5 cm depth were measured

using digital thermometers when gas samples were collected.

Measurement of Rs

Soil respiration was measured using opaque, static, manual

stainless steel chambers described by Lin et al. (2011). In

brief, the chambers were 40 cm 9 40 cm 9 40 cm. Soil

respirations were measured at intervals of 7–10 days during

the experimental period. There were 25, 16, 18 and 18

sampling occasions at the starting dates of 23 April in 2009,

6 July in 2010, 20 June in 2011 and 12 May in 2012,

respectively. The Rs between 10:00 a.m. and 12:00 a.m. local

time represented 1-day average flux. Chambers were closed

for half an hour, and gas samples (100 mL) were collected

every 10 min using plastic syringes. Gas samples of CO2

concentration were analysed with gas chromatography (HP

Series 4890D; Hewlett Packard, USA) within 24 h following

gas sampling. The method of calculating Rs was the same as

that described by Lin et al. (2011).

Statistical methods

General linear model-repeated measures define factors (SPSS

16.0; SPSS Inc. Chicago, IL, USA) was used to assess the

significance of the impacts of sampling day, treatment and
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their interactions on Rs in each year due to different

sampling times. Significant differences between soil

temperature, soil moisture, ANPP and root biomasses and

Rs among grazing treatments were assessed by one-way

ANOVA and least significance difference. Pearson’s

correlation was used to test the correlations between daily

soil temperature and soil moisture and daily Rs. Stepwise

multiple linear regression analysis was performed to test the

possible dependency of seasonal Rs on seasonal soil moisture

and soil temperature, aboveground and root biomasses. All

significances mentioned in the text were at P ≤ 0.05.

Results

Soil temperature and soil moisture and biomass

There were no significant differences in soil temperature and

soil moisture, although there was a trend in soil temperature

increase (i.e. 0.5 °C) for WG and CG treatments (Figure S1).

WG significantly increased ANPP compared with NG except

in 2010 and compared with CG except in 2012, and there were

no significant differences between NG and CG except in 2009

(Figure 2a). In both the WG and CG treatments, compared

with NG grazing increased root biomass at 0–40 cm depth

except in 2011 (Figure 2b).

Soil respiration (Rs)

Although there were no significant differences in daily and

monthly Rs among the three treatments (Figures 3–6), both

WG and CG significantly increased seasonal Rs in 2009

(Figure 3c). Peaks of daily and monthly Rs were in July

and/or August for all treatments during the experimental

period, except in 2011, which was in June. The average Rs

from July to September was lowest in 2012 (i.e. 326.6 mg

CO2/m
2/h), followed by 2011 (i.e. 368.3 mg CO2/m

2/h) and

2009 (i.e. 405.6 mg CO2/m
2/ h), and was greatest in 2010

(i.e. 419.6 mg CO2/m
2/h).

Factors affecting Rs

Daily Rs was mainly affected by soil temperature, which

can explain 40–49% of the variation in daily Rs for all

grazing treatments (Figure 7), and there were no significant

correlations between daily Rs and soil moisture (data not

shown). Temperature sensitivity of Rs to soil temperature

was greatest in CG compared with other treatments

(Figure 7). Seasonal Rs from July to September was

significantly influenced by soil temperature, root biomass

and soil moisture (Figure 8). Stepwise regression analysis

showed that seasonal Rs = 11.254 + 28.890Ts + 0.026 RB

(r2 = 0.55, n = 36, P < 0.001), where Ts is seasonal soil

temperature from July to September and RB is root

biomass.

Discussion

Our study did not find significant effects of moderate grazing

on seasonal average Rs, except in 2009. Similarly, when all

measurements were averaged over the entire season, there

was no difference in CO2 fluxes between heavily grazed,

lightly grazed and ungrazed pastures (Lecain et al., 2000).

Our study showed that the soil temperature at 5 cm was the

main factor affecting daily and seasonal change in soil

respiration. Soil temperature and water content are known

to have a pronounced influence on the seasonal dynamics of

soil respiration (Fang & Moncrieff, 2001; Reichstein et al.,

2003; Ryan & Law, 2005; Jia et al., 2007). However, soil

moisture did not affect daily and seasonal Rs in our study,

because soil moisture is not a limiting factor for microbial

activity in the region (Lin et al., 2011). A number of studies

have shown that soil water content has a limited impact on

soil respiration rate except at the extremes of saturation or
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water deficit (Edwards, 1975; Hanson et al., 1993; Jia et al.,

2005). Soil temperature can explain 40–49% and 32% of the

variation in daily and seasonal Rs in our study, which is

lower than previous reports (i.e. 65% of CO2 efflux

variability) (Frank, 2002). Similar results have also been

reported for research conducted in alpine meadow on the

Tibetan plateau (Cao et al., 2004). However, Geng et al.

(2012) found root biomass and soil moisture, but not soil

temperature, best explain large-scale patterns in Rs.

Soil respiration originates mainly from root and microbial

activities, and partitioning root and microbial contributions

to soil respiration is important for calculating the carbon

budgets of vegetation and the turnover rate of soil organic

matter, as well as for understanding sources and sinks of

carbon in terrestrial ecosystems under global climate change

(Jia et al., 2006). In our study, both WG and CG increased

root biomass, which may result from changes in plant

species composition induced by grazing (Wang et al., 2012).

For example, grazing increased the proportion of forbs in

the community, which are deep rooted in the study site

(unpublished data). Raich and Tufekcioglu (2000) reported

that root contribution to soil respiration was 17–40% in

grasslands and 50–93% in arctic tundra. The proportions of

root respiration to soil respiration by the inferred method

were 40% in unbroken tallgrass prairie (Kucera & Kirkham,

1971), 14–39% in temperate grassland (Li et al., 2002; Jia

et al., 2006), and 42% (Gupta & Singh, 1981) and 36.4%

(Upadhyaya & Singh, 1981) in tropical grassland. For the

inferred approach (Kucera & Kirkham, 1971), the key

assumption that the CO2 efflux rate from root respiration is

proportional to root biomass has to be valid. In our study,

due to drought in 2011 and 2012, root biomass of all

treatments decreased over the study period. As Figure S2
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shows, the correlation coefficients (r2) between Rs rate and

root biomass were 0.16 for NG (P = 0.200), 0.37 for WG

(P = 0.037) and 0.47 for CG (P = 0.014). Thus, these models

could significantly explain about 37–47% of variation in soil

respiration rates for WG and CG, and mean inferred

proportions of root respiration to soil respiration were 57.4

and 65.3% from July to September for WG and CG,

respectively. These results are similar with the report by

Raich and Tufekcioglu (2000) in the arctic tundra.

Some studies have reported that soil compaction decreased

Rs (Linn & Doran, 1984; Torbert & Wood, 1992) because

soil compaction shifts soil conditions to an anaerobic state,

resulting in reduced aerobic microbial activity due to a

reduction in O2 diffusion through soil (Cannell, 1977). In

our study, although we did not measure the effects of

grazing on soil bulk density, these effects could be relevant

because the WG and CG treatments involved moderate

stocking rates and two grazing events each year.

Conclusions

In both warm and cold season grazing treatments, moderate

grazing did not decrease plant production, and even

increased aboveground biomass for WG and root biomass

for both WG and CG compared with NG, whereas there

were no significant differences in Rs for all grazing

treatments, except in 2009. Root biomass and/or soil

temperature were the main factors affecting daily and

seasonal Rs in the alpine meadow. Therefore, relative to

NG, moderate grazing is preferred for local farmers because

it enables a balance between livestock production and

environmental protection in the alpine region.
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Figure 8 Relationships between seasonal soil respiration and soil

temperature at 5 cm soil depth (a), soil moisture at 5 cm soil depth

(b) and root biomass (c) across all treatments.
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