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Tibet is one of the most threatened regions by climate warming, thus understanding how its
microbial communities function may be of high importance for predicting microbial responses to
climate changes. Here, we report a study to profile soil microbial structural genes, which infers
functional roles of microbial communities, along four sites/elevations of a Tibetan mountainous
grassland, aiming to explore the potential microbial responses to climate changes via a strategy of
space-for-time substitution. Using a microarray-based metagenomics tool named GeoChip 4.0, we
showed that microbial communities were distinct for most but not all of the sites. Substantial
variations were apparent in stress, N and C-cycling genes, but they were in line with the functional
roles of these genes. Cold shock genes were more abundant at higher elevations. Also, gdh
converting ammonium into urea was more abundant at higher elevations, whereas ureC converting
urea into ammonium was less abundant, which was consistent with soil ammonium contents.
Significant correlations were observed between N-cycling genes (ureC, gdh and amoA) and nitrous
oxide flux, suggesting that they contributed to community metabolism. Lastly, we found by
Canonical correspondence analysis, Mantel tests and the similarity tests that soil pH, temperature,
NH4

þ–N and vegetation diversity accounted for the majority (81.4%) of microbial community
variations, suggesting that these four attributes were major factors affecting soil microbial
communities. On the basis of these observations, we predict that climate changes in the Tibetan
grasslands are very likely to change soil microbial community functional structure, with particular
impacts on microbial N-cycling genes and consequently microbe-mediated soil N dynamics.
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Introduction

As the roof of the world, the Tibet plateau is
considered the third ‘pole’ (Qiu, 2008). Rich in
glaciers and permafrost, the region has Earth’s third
largest ice store after Antarctic and Arctic (Qiu,
2010). Recent decades have witnessed strong

effects of climatic warming as this region has been
experiencing three times the average global warming
rate since 1960 (Li and Tang, 1988). It is predicted
that the Tibetan alpine tundra could decrease to
20% of its current level with further climate
warming (Walker et al., 2001). These observations
and in silico modeling render Tibet as one of the
most threatened regions by climate warming.

Tibetan ecosystems are particularly vulnerable to
climate warming, which can partially be attributed
to the pronounced role of climate in structuring
alpine system (for example short growth season of
plants) (Klein et al., 2004) and the snow-albedo or
ice-albedo feedback that amplifies climate warming
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(Déry and Brown, 2007). The alpine grassland,
accounting for roughly 35% of Tibet plateau, is a
representative landscape of the Tibetan region (Cao
et al., 2004). Studies have been carried out to
analyze vegetation (Klein et al., 2004, 2007) and
soil biogeochemical processes (Cao et al., 2001;
Hastings et al., 2005; Wang et al., 2009b). However,
soil microbial communities remain little under-
stood. This knowledge gap calls for attention as it
has been well documented that soil microbes drive a
variety of biogeochemical processes such as carbon
(C), nitrogen (N), phosphorus (P) and sulfur (S)
cycling, and consequently provide critical ecosys-
tem services such as soil fertility and greenhouse gas
mitigation (Whitman et al., 1998; Green et al., 2008).

The recent, rapid development of high-through-
put metagenomics technologies has enabled scien-
tists to conduct detailed investigation of microbial
communities. Although advancements have been
achieved (Huber et al., 2007; Pointing et al., 2009;
Dick and Tebo, 2010), most studies of this kind focus
on microbial taxonomy. However, it is crucial to
examine microbial functional signatures such as
structural genes relevant to metabolic pathways,
energetics and regulatory circuits, which directly
address microbial functional potentials related to
ecosystem processes. To fulfill this need, a micro-
array-based metagenomics tool named GeoChip is
an excellent choice and has been widely adopted to
examine microbial gene diversity in various environ-
ments (Van Nostrand et al., 2009; Waldron et al.,
2009; Wang et al., 2009a; He et al., 2010; Lu et al.,
2012). The most advanced version of GeoChip,
GeoChip 4.0 can target a wide array of 152 414
microbial genes belonging to 410 gene families.

In this study, we used GeoChip 4.0 to survey
microbial gene diversity along the elevation/tem-
perature gradient of a mountainous grassland of the
Tibet plateau. The observational investigations
along an elevation/temperature gradient reveal
potential microbial responses to climate changes,
using a strategy of space-for-time substitution
(Dunne et al., 2004). Although there have been
numerous studies on profiling microbial distribu-
tion at the phylogenetic level (Bryant et al., 2008;
Fierer et al., 2011; Wang et al., 2012), there has been
no such study at the functional gene level. Here we
define microbial genes present in all of the elevations
as ubiquitous genes and those present at only one
elevation as endemic genes. We are interested in
testing the following hypotheses: (i) the functional
structure of microbial community differs among
elevations, given high soil heterogeneity and varia-
tions of vegetation and climatic conditions, and soil
and vegetation attributes contribute significantly in
shaping the functional structure; (ii) variations of
microbial stress genes are consistent with the
increasing alpine stress at higher elevations; (iii)
variations of C- or N-cycling genes are significantly
linked to soil C and N dynamics in the alpine
grassland; and (iv) the pattern of endemic gene

abundances not only differs from that of ubiquitous
gene abundances but also differs among elevations.
The study is based on field investigations of four
fenced sites/elevations in a mountainous grassland
located at the Haibei Alpine Meadow Ecosystem
Research Station of Qinghai province, which has
typical climate and vegetation of Tibetan alpine
grasslands (Wang et al., 2009b, 2010a, b).

Materials and methods

Site and sampling
Sampling was carried out at the Haibei Alpine
Meadow Ecosystem Research Station in Qinghai
province, located in the northeast of Qinghai-Tibet
Plateau (371370N, 101112E’) in a valley surrounded
by the Qilian Mountains. The local climate is
highland continental, characterized to be cold and
long in winter but warm and short in summer. The
annual mean air temperature and precipitation are
� 1.7 1C and 560 mm, respectively (Zhao et al.,
2006). Soil type at the research sites is dominated
by Mat Cryic Cambisols typical of alpine grassland
soil, with pH value of 7.3 and 7.4 at depths of 10 cm
and 20 cm, respectively. The growing season of
vegetation is from May to September, during which
more than 80% of the precipitation occurs. Vegeta-
tion reaches its maximal aboveground biomass level
in late July and early August and starts withering in
early October. Approximately 87% of vegetation
species at the sites use the C3 photosynthetic
pathway (Zhao et al., 2006).

The study sites, as part of a comprehensive
project to examine the effects of artificial warming
and/or livestock grazing on Tibetan grasslands,
were initiated at four sites/elevations of 3200,
3400, 3600 and 3800 m in May 2006. The spatial
distances between adjacent elevations are 6.2 km
(3200–3400 m), 4.2 km (3400–3600 m) and 1.3 km
(3600–3800 m), respectively. These sites were
selected for their representative vegetation and soil
attributes for the elevations. The plant community
at 3200 m is dominated by Kobresia humilis,
Elymus nutans, Stipa aliena, Potentilla anserine
and Thalictrum alpinum. The plant community at
3400 m consists primarily of a species of hardy
deciduous flowering shrub (Potentilla fruticosa)
with 50–60% total coverage and beneath grass
species of Kobresia humilis, Elymus nulan and
Festuca ovina with 80% total coverage. The plant
community at 3600 m site is dominated by Kobresia
humilis, Potentilla nivea, Thalictrum alpinum,
Carex atrofusca, Poa crymophila and Potentilla
fruticosa. The plant community at 3800 site is
dominated by Kobresia humilis, Poa crymophila,
Androsace mariae, Polygonum macrophyllum and
Kobresia pygmaea. Owing to the alpine environ-
ment, the plant communities are characterized by
short growth period, low primary production and
diversity.
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At each elevation, three plots comprising typical
vegetation and soil attributes were fenced to mini-
mize disturbance. The dimensions of the plots were
1.0 m, 1.0 m and 0.3 m in length, width and height,
respectively. The distance between adjacent plots
was roughly 0.6 meter. In August 2009, soil samples
were collected from all of the plots. Five soil cores at
a depth of 0–20 cm and diameter of 1.5 cm were
randomly taken from each plot and mixed
thoroughly to generate a soil sample representing
the plot. Soil samples were kept on ice when
transporting to laboratory and sieved with 2 mm
mesh to remove roots and stones. Soil samples were
preserved at � 80 1C before DNA extraction.

DNA extraction, purification and quantitation
Soil genomic DNA was extracted using a FastDNA
spin kit for soil (MP Biomedical, Carlsbad, CA, USA)
following the manufacturer’s instructions. To purify
it, the DNA extract was mixed with 2.5 volume of
100% ice-cold ethanol and 0.1 volume of 3 M
NaOAc (pH 5.2) before overnight incubation at
� 20 1C. DNA was precipitated by centrifugation
for 30 min at 13 000 g. Then supernatant was
decanted and washed with 1 ml of 70% ethanol.
DNA was air-dried and dissolved in 50 ml of
nuclease-free water. DNA quality and quantity were
measured using NanoDrop ND-1000 Spectrophoto-
meter (NanoDrop Technologies Inc., Wilmington, DE,
USA) and with PicoGreen (Ahn et al., 1996) using a
FLUOstar Optima (BMG Labtech, Jena, Germany),
respectively.

GeoChip 4.0 experiments
As previously described (Yang et al., 2013), DNA
samples were labeled with the fluorescent dye Cy-5
using a random priming method and purified using
the QIA quick purification kit (Qiagen, Valencia,
CA, USA). Then DNA was dried in a SpeedVac
(ThermoSavant, Milford, MA, USA) at 45 1C for
45 min. The hybridization was carried out at 42 1C
for 16 h on a MAUI hybridization station (BioMicro,
Salt Lake City, UT, USA). After purification, Geo-
Chip microarrays were scanned by a NimbleGen
MS200 scanner (Roche, Madison, WI, USA) at
633 nm using a laser power and photomultiplier
tube gain of 100% and 75%, respectively.

Data analyses
Signal intensities were quantified and processed
using the data analysis pipeline as previously
described (Yang et al., 2009; He et al., 2010; Yang
et al., 2013). Then processed GeoChip data were
analyzed using the following steps: (i) remove the
poor quality spots, which were flagged as 1 or 3 by
ImaGene (Arrayit, Sunnyvale, CA, USA) or with a
signal to noise ratio of less than 2.0; (ii) normalize
the signal intensity of each spot by dividing the

signal intensity by the total intensity of the micro-
array followed by multiplying by a constant; (iii)
transform the data to the natural logarithmic form;
and (iv) remove genes detected in only one out of
three samples from the same elevation.

Principal component analysis was used to deter-
mine overall functional changes in the microbial
communities. Bray-Curtis distance was used to
obtain dissimilarity matrices in the adonis algorithm
of the dissimilarity test for comparing GeoChip data
of four elevations. All the analyses were performed
using functions in the Vegan package (v.1.15-1) in R
v. 2.8.1 (RDC Team, 2006).

The similarity test, Mantel test, Canonical corre-
spondence analysis (CCA) and Variation partition-
ing analysis were used to evaluate the linkages
between microbial gene compositions and environ-
mental attributes. In the similarity test, Euclidean
distance was used to calculate the distance between
samples, followed by calculation of Pearson correla-
tion coefficient. To select attributes in CCA model-
ing, we used variation inflation factors to examine
whether the variance of canonical coefficients was
inflated by the presence of correlations with other
attributes. If an attribute had a variation inflation
factor value larger than 20, we deemed it to be
affected by other attributes and consequently
removed it from the CCA modeling. The Variation
partitioning analysis analysis resulted in five soil
attributes (soil pH, moisture, NH4

þ–N, NO3
�–N and

soil temperature at the depth of 5 cm) and two
vegetation attributes (Shannon diversity and total
coverage of vegetation). As temperature was mea-
sured per site, one way analysis of variance was not
conducted. All the analyses were performed using
functions in the Vegan package (v.1.15-1) in R
v. 2.8.1 (RDC Team, 2006).

Soil and vegetation attribute measurements
At the time of soil sampling, soil temperature was
measured by type-K thermocouples (Campbell
Scientific, Logan, UT, USA) coupled to a CR1000
datalogger at depths of 5, 10 and 20 cm. Soil
moisture at depths of 5 and 10 cm were recorded
by time domain reflectometry (Model Diviner-2000,
Sentek Pty Ltd., Stepney, SA, Australia).

In the lab, total soil organic C and N were
quantified by a TOC-5000 A analyzer (Shimadzu
Corp., Kyoto, Japan) and a Vario EL III Elemental
Analyzer (Elementar, Hanau, Germany), respec-
tively. To measure NH4

þ–N and NO3
�–N, 10 g of

fresh soil was suspended in 50 ml of 2 mol l� 1 KCl
solution, then shaken at room temperature for 1
hour and placed for 30 min under unstirred condi-
tions. Subsequently, clear supernatant was passed
through a filter paper of 30–50 mm pore size
and analyzed using continuous flowing SANþ þ

Analyzer (SKALAR, Breda, the Netherlands).
The greenhouse gases (CO2, N2O and CH4) were

measured by chamber per plot setting at the 5 cm
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depth of soil as previously described (Wang et al.,
2009b). During sampling, chambers were closed
for half an hour. Hundred milliliters of air
samples were taken by plastic syringes every
10 min and transported to the lab. Greenhouse
gas concentrations were measured by gas chroma-
tograph (Agilent 4890D, Agilent Co., Santa Clara,
CA, USA) equipped with a flame ionization
detector and an electron capture detector as
previously described (Yuesi and Yinghong,
2003). As there were many rat holes in the soil
at the elevation of 3600 m, the measurement of the
greenhouse gas fluxes data (CO2, CH4 and N2O)
was unreliable. Therefore, we excluded those
points in the correlation analysis with the green-
house gas fluxes.

One quadrant of 1� 1 m was selected at each plot
to measure vegetation attributes. The vegetation
attribute indices included vegetation species
number, diversity, total coverage and aboveground
biomass, which were all recorded according to
established protocols (Klein et al., 2007). Vegetation
was weighted instantly for aboveground biomass
data after mowing. Vegetation diversity was calcu-
lated by Shannon index.

Results

Distribution patterns of soil microbial communities
along the elevation gradient
A total of 49 520 genes were detected by GeoChip
4.0. Detected genes were the fewest at the 3200 m
site (23 369 genes) and roughly doubled at the
3400 m site (45 685 genes). Slightly fewer genes
were detected at higher elevations than those
at the 3400 m site (Supplementary Table S1).
Alpha-diversities, as shown by Shannon and
Simpson indices, varied concurrently with gene
numbers. Alpha-diversities differed significantly
(Po0.05) among 3200, 3400 and 3600 m sites,
which was supported by the dissimilarity test
using adonis algorithm (Supplementary Table S2).
However, microbial communities at 3600 and
3800 m sites appeared to be similar by the
statistical test (P40.05). Consistently, principal
component analysis with the whole GeoChip
data set showed that samples of 3200 and 3400 m
sites were well separated from the others, but
samples of 3600 and 3800 m sites were similar
(Figure 1).

Gene overlap between elevations was also calcu-
lated. Higher percentages of shared genes were
observed among 3400, 3600 and 3800 m sites
(81.1–83.8%) (Supplementary Table S3), whereas
only 50.3–53.4% of the genes were shared between
3200 m and other sites. The highest percentages of
shared genes (82.7–92.3%) were observed for the
plots within the same elevation (data not shown),
suggesting that the within-elevation variation was
small.

Selected gene categories
Genes involved in stress response, N and C cycling
were examined below. Only selected genes were
presented or described.

Stress response. Considerable variability of stress
genes was observed (Figure 2). Cold shock genes,
CspA, cspB, desK and desR genes, which are cold
shock genes required for adaption to cold environ-
ment (Ermolenko and Makhatadze, 2002), were
more abundant at higher elevations. In contrast,
heat shock genes (dnaK, groEL, groES, grpE and
hrcA) remained unchanged.

N cycling. N-cycling genes differed substantially
among the four elevations (Figure 3). For example,
total abundances of ureC and gdh genes involved
in ammonification, napA genes involved in
dissimilatory N reduction and nosZ genes involved
in denitrification exhibited distinct differences for
each site, whereas no significant difference was
observed for the abundances of nifH and nrfA genes.
Notably, changes of ureC and gdh abundances were
largely reverse, which was consistent with their
opposite functional role in N mineralization. nirS
and nosZ genes involved in denitrification were
more abundant at higher elevations but amoA gene
involved in nitrification was less abundant.
Consistently, soil NO3

�–N and NH4
þ–N contents

were increased and decreased at higher elevations,
respectively (Supplementary Table S4).

Grassland nitrous oxide (N2O) emission is a
microbe-mediated process. Thus, we explored
whether N-cycling genes were correlated with N2O
flux. The results showed that total abundances of
ureC and amoA were positively correlated (Po0.01)
with N2O flux, whereas those of gdh (Po0.01),
nosZ (Po0.01) and nirS (Po0.1) were negatively
correlated (Figure 4).

Figure 1 Principle component analysis (PCA) of GeoChip data.
The values of Axis 1 and 2 are percentages of total variations that
can be attributed to the corresponding axis.
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C cycling. Variability was apparent for C cycling
genes (Supplementary Figure S1). For C-fixation
genes, the abundance of rubisco (ribulose-1,
5-bisphosphate carboxylase/oxygenase) was the

lowest at 3200 m, but no other C-fixation genes
exhibited similar patterns. For C degradation
(starch, hemicellulose, cellulose, aromatics, chitin
and lignin degradation), isopullulanase and

Figure 2 Total gene abundances, normalized to the abundance at 3200 m, of stress gene categories at each elevation. All data are
presented as mean±s.e. calculated from biological triplicates. Significant (Po0.05) differences among elevations are indicated by
alphabetic letters above the bars.

Figure 3 Total gene abundances, normalized to the abundance at 3200 m, of N genes at each elevation. All data are presented as
mean±s.e. calculated from biological triplicates. Significant (Po0.05) differences among elevations are indicated by alphabetic letters
above the bars.
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exoglucanase were more abundant at higher eleva-
tions, whereas exochitinase and glx were less
abundant. For methane (CH4) cycling, our results
indicated that methane-producing gene mcrA and
methane-oxidizing gene mmoX were more abundant
at higher elevations, whereas methane-oxidizing
gene pmoA remained unchanged. Although these
results might suggest that functional potentials of
CH4 cycling were enhanced, no correlation was
observed between CH4 flux and abundances of
mmoX (r¼ � 0.05, P40.11), mcrA (r¼ � 0.10,
P40.25) and pmoA (r¼ � 0.43, P40.84) genes.
Similarly, there was no correlation between CO2

flux and abundances of C-degradation genes
(r¼ 0.29, P40.36).

Ubiquitous and endemic genes
A total of 21842 microbial genes were present in
all of the four sites, whereas 5962 genes were
present at only one site. That is, ubiquitous and
endemic genes accounted for 44.1% and 12.0% of
total detected genes, respectively (Supplementary
Figure S2). Ubiquitous genes were predominantly
derived from the phyla of Proteobacteria, Actino-
bacteria and Firmicute, which was consistent
with observations in a wide range of soil types
that these bacteria were prevalent in soil (Roesch
et al., 2007; Monroy et al., 2012; Yergeau et al.,
2012).

The average abundance of endemic genes was
roughly 33% of that of ubiquitous genes, suggesting

that endemic genes tended to be rare genes that were
typically low in abundance. Several gene categories
enriched in the endemic genes (Figure 5a). Among
them, there were a total number of 1718 endemic
stress genes, including 151 s24 genes responsive to
extreme temperature stress, 122 glnA genes encoding
a glutamine synthetase required for N-limiting
conditions (Merrick and Edwards, 1995) and 162
fnr genes encoding a transcriptional activator
required for oxygen-limiting conditions (Spiro and
Guest, 1987).

It was also noted that endemic genes enriched
genes derived from viruses, archaea and fungi
(Figure 5b). Major endemic viruses included
Enterobacteria phages and Bacillus phages. Major
endemic archaea included Halobacteriaceae,
Methanosarcinaceae and Sulfolobaceae, and major
endemic fungi included Aspergillus niger and
Gibberella zeae.

The numbers of endemic genes differed substan-
tially among the four elevations, with the highest at
the 3400 m site and the lowest at the 3200 m site
(Supplementary Table S5). At higher elevations,
stress, N cycling and S cycling genes occupied larger
portions of endemic genes as compared with the
3200 m site, suggesting that they were needed to

Figure 4 Correlations between N2O flux and the abundance of
N-cycling genes.

Figure 5 Comparison of percentage changes of (a) each gene
category of endemic genes to that of ubiquitous genes and
(b) microbial domains or phyla of endemic genes to those
of ubiquitous genes.
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cope with the environments at higher elevations
(Supplementary Figure S3). In contrast, C cycling,
metal resistance and bacterial phage occupied
smaller portions. Endemic stress genes included
chaperone dnaK, groEL, hsp10/groES and grpE,
response regulators desR and hrcA of temperature
stress, heme catalase katE, response regulator oxyR
of oxygen stress, proline transporter proU of
osmotic stress and GTPase obgE of radiation stress
involved in final steps of the 50S ribosomal subunit
assembly and glnA and glnR genes responsive to N
stress.

The tight linkage between the microbial gene
composition and environmental attributes
All the environmental attributes were generated
by soil geochemical measurements, and four
vegetation attributes including total coverage of
vegetation, vegetation species number, vegetation
diversity were calculated with the Shannon index
and vegetation biomass (Supplementary Table S4).
To explore the linkages between the microbial gene
composition and environmental attributes, the simi-
larities between microbial gene composition and
aboveground vegetation and soil attributes were
examined, which in turn showed very strong
and significant correlations (Po0.01) (Figure 6).
To verify it, Mantel tests (Table 1) were conducted
with the whole data set of vegetation and soil
attributes, showing that the microbial community
was significantly (Po0.01) correlated with vegetation
and soil attributes with r values of 0.75 and 0.67,
respectively.

CCA was used to identify the major environ-
mental attributes controlling soil microbial gene
composition. The results of CCA, a significant
model at the confidence level of Po0.01, indicated
that soil pH, temperature, NH4

þ–N and vegetation
diversity were important environmental attributes
controlling the microbial community structure as
they were significantly correlated with Axis 1
(Po0.01), which represented the major variations
among microbial communities (Figure 7a). The
importance of these environmental attributes was
verified by Mantel tests on the basis of their
significant correlation (Po0.01) with GeoChip data
(Table 1).

To partition the contributions of environmental
attributes, Variation partitioning analysis was car-
ried out. The results showed that a small set of seven
environmental attributes accounted for 81.4% of
microbial community variations of GeoChip data
(Figure 7b), indicating that they were major factors
shaping microbial gene composition. Soil climatic,
geochemical and aboveground vegetation attributes
appeared to impose strong effects on microbial
community. In addition, interaction between vegeta-
tion and soil geochemical attributes was substantial
(13.2%).

Discussion

Our first hypothesis, namely that the functional
structure of a microbial community differs across
elevations and that soil and vegetation attributes
contribute significantly to shaping the functional
structure, was verified in part, as significant differ-
ences were detected except for 3600 and 3800 m
samples. The number of detected microbial genes at

Figure 6 The correlations between (a) microbial community and
vegetation and (b) microbial community and soil attributes.
Euclid distances among samples were calculated and plotted to
generate Pearson correlation values.

Table 1 Mantel test of GeoChip data with environmental
attributes

Environmental
attribute (unit)

r value Environmental attribute (unit) r value

Elevation (m) 0.58**b TOC20 (%) 0.52**
Soil pH 0.42** TN20 (g kg�1) 0.30*
Moisture (%) 0.10 SIN (g kg�1) 0.10
T5a (1C) 0.69** Total coverage of vegetation (%) 0.15
T10 (1C) 0.74** Vegetation species 0.16
AT (1C) 0.25* Vegetation diversityc 0.54**
NO3

� -N10 (mg kg�1) 0.07 Vegetation biomass (g) 0.74**
NH4

þ -N10 (mg kg�1) 0.47* Released CH4 (mg m�2 h� 1) 0.04
TOC10 (%) 0.65** Released CO2 (mg m�2 h� 1) �0.13
TN10 (g kg�1) 0.09 Released N2O (mg m�2 h� 1) �0.12

aAbbreviations: T, temperature; AT, air temperature; TOC, total
organic C; TN, total N; SIN, soil inorganic N; 5, 10 and 20, soil
characteristics measured at depths of 5, 10 or 20 cm.
bSignificant differences (Po0.05) are indicated in bold. **Po0.01,
*Po0.05.
cVegetation diversity was calculated by Shannon index.
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the 3200 m site was roughly half of those at the other
sites, suggesting that its microbial gene diversity
was substantially different. This observation can be
explained by soil heterogeneity linking to geo-
graphic distance, as the distance between 3600 and
3800 m sites is the shortest (1.3 km), and the 3200 m
site is distant from the other sites (6.2–11.5 km).
Notably, soil pH might have an adverse effect on
microbial gene diversity of the 3200 m site, as it was
the highest (pH of 7.9). Alternatively, it might be
caused by aboveground vegetation as the vegetation
diversity was the lowest at this site. Vegetation
affects soil microbial community through a number
of mechanisms (Wardle et al., 2004). As producer, it
supplies organic C and other resources to soil
microbial community, which comprises most of
the decomposer system. The quantity and quality
of resources depend on vegetation species, thus
individual vegetation species can influence the
composition and function of soil microbial

communities. However, effects of the vegetation
diversity and productivity on soil biodiversity
depend on context and vary substantially between
locations (Wardle, 2002). In our case, productivity
appeared not to be the determinant of microbial
gene diversity. Rather, the results of CCA (Figure 7a)
and Mantel tests (Table 1) demonstrated that the
vegetation diversity had an important role in
controlling microbial community structure of the
Tibetan grassland. Also, we found that the vegeta-
tion diversity appeared to be strongly correlated
(r¼ 0.58, Po0.04) with the microbial gene diversity
(Supplementary Figure S4), which provided further
support.

Soil attributes of pH, temperature and NH4
þ–N

were crucial for shaping microbial community
structure, as shown by CCA (Figure 7a) and Mantel
tests (Table 1). Consistently, soil pH and temperature
were key drivers in shaping bacterial communities
along elevation gradients (Wang et al., 2012; Shen
et al., 2013). It has also been observed that the
productivity of alpine grassland was mainly con-
trolled by the available N pool (Baumann et al.,
2009). Generally, microbial abundance and compo-
sition depended on environmental attributes of soil
nutrient availability (Lozupone and Knight, 2007;
Jesus et al., 2009). These previous studies demon-
strated that the soil pH, temperature and N were
important for shaping phylogenetic compositions of
microbial communities, whereas our results sup-
ported it at the level of microbial functional genes.

Notably, the two axes of CCA together (Figure 7a)
explained 64.6% of community variance, which
was more substantial than most other GeoChip
studies (Liang et al., 2011; Lu et al., 2012). It has
recently been documented that harsh environments
could reduce microbial community variation and
consequently correlate microbial community with
environmental attributes well (Pointing et al., 2009;
Yergeau et al., 2012). Consistently, our recent
experiments to examine effects of anthropogenic
perturbation on this site indicated that microbial
community structure was fragile (Yang et al., 2013).
However, it should be noted that a limitation in our
study exists in the use of a small area as a proxy to
assess the Tibetan alpine grassland. Although, we
take comfort in the fact that the study site, located
at Haibei Alpine Meadow Ecosystem Research
Station, has a representative landscape of a large
portion of Tibetan grasslands (Wang et al., 2009b,
2010b), there will be exceptions in other alpine
grasslands, given the typically high soil
heterogeneity.

Our second hypothesis, namely that variations of
microbial stress genes are consistent with the
increasing alpine stress at higher elevations, was
verified by our observation that microbial stress
genes responsible for coping with a cold environ-
ment were more abundant at higher elevations
(Figure 2), which was apparently a response to low
temperature. However, our third hypothesis, namely

Figure 7 (a) CCA of GeoChip data and geochemistry attributes:
soil pH, NO3

�–N, NH4
þ–N, the temperature of 5 cm depth in soil

(T5), the total coverage of vegetation (TCOV), the alpha diversity
of vegetation (diversity), soil moisture (moisture). The percentage
of variation explained by each axis is shown and the relationship
is significant (Po0.05). (b) Partitioning of microbial diversity
variance among important geochemical attributes, soil chemistry
including soil pH, moisture, ammonia and nitrate (S), soil climate
attributes including soil temperature and soil moisture of 5 cm
depth (C), vegetation including total coverage and diversity (V),
and their interactions (S�V, S�C and V�C). The values in
parentheses are P-values.
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that variations of C- or N-cycling genes are sig-
nificantly linked to soil C and N dynamics in the
alpine grassland, was only partially supported by
the correlation between several N-cycling genes
and N2O flux (Figure 4), but no correlation was
detected for CO2 and CH4 fluxes. An explanation
was that the C/N ratio of plants was higher than
that of microbes, rendering microbial communities
sensitive to N as a limiting factor. For N-cycling
genes, ureC converted urea into the substrate of
N2O flux (NH4

þ–N), whereas gdh reversed the
reaction. Accordingly, ureC and gdh were posi-
tively and negatively correlated to N2O flux,
respectively. Interestingly, a positive correlation
was observed for amoA gene involved in nitrifica-
tion, whereas negative correlations were observed
for nirS and nosZ involved in denitrification. This
finding might implicate that nitrification, but not
denitrification, was the major process of N2O
emission of the alpine grassland. As a conse-
quence, the change of N2O emission negatively
affected soil NO3

�–N content, which in turn
affected the abundance of denitrification genes
nirS and nosZ. In support of this view, previous
studies indicated that nitrification was the domi-
nant mechanism influencing grassland N2O emis-
sion (Ryden, 1981; Klemedtsson et al., 1988).
Meanwhile, it is not surprising to detect no
correlation between C-cycling genes and CO2 flux
because the latter includes soil autotrophic
respiration, making it unlikely to correlate CO2

flux with soil microbial genes. However, it
remains unclear why no correlation was detected
for CH4 flux.

Our findings supported our fourth hypothesis
that the pattern of endemic gene abundances not
only differs from that of ubiquitous gene abun-
dances but also differs among elevations. Distribu-
tion patterns vary by microbial functional or
taxonomic groups (Horner-Devine et al., 2004;
Zhou et al., 2008). Thus, we examined endemic
genes to identify those with relatively high habitat
specificity, which reflected sensitivity to environ-
mental variations. Interestingly, endemic genes
were usually low in abundance, raising the
possibility that they are part of a ‘rare biosphere’.
Meanwhile, bearing in mind a caveat that the
identification of endemic genes is subjected to the
detection level of GeoChip, we noted the enrich-
ment of several microbial groups. Enrichment of
stress genes (Figure 5a) in the endemic group
implicates their important roles in coping with
different alpine environments characterized by
low temperature, oxygen and nutrient levels and
high UV irradiation. For phylogenetic groups, the
enrichment of bacteriophage was not surprising, as
the appearance of new bacteria induced new bacter-
iophage species. For fungi, the narrow dispersal has
been reported (Herlemann et al., 2011; Yergeau et al.,
2012), which is attributed to its relatively large size
compared with bacteria. However, size could not

explain the enrichment of archaea, which are of
comparable size to bacteria. Notably, there were
reports that archaea were sensitive to certain
environments such as N-limited or dry environ-
ment (Rothrock and Garcia-Pichel, 2005; Pointing
et al., 2009).Our results showed that many ende-
mic genes differed among elevations, which
reflected habitat specificity. It was noted that
vegetation biomass was the highest for 3200 m
(Supplementary Table S4), which might require
additional C-cycling genes to utilize C deposited
to soil. Meanwhile, stress of temperature, oxygen
and nutrient differs by elevations, which induced
different stress genes.

Global climate warming effects are most pro-
nounced in the polar and alpine regions, where
ecosystems are fragile (Li and Tang, 1988; Hansen,
2000). It is thus necessary to document the ecosys-
tem, particularly the poorly understood microbial
communities, because they may encounter cata-
strophic shifts, should warming continue to occur.
Here we report the profiling of microbial distribu-
tion at the gene level, which provides valuable
insights for potential effects of climate changes on
this alpine ecosystem. On the basis of the strategy of
space-for-time substitution, we predict that the
warming will upshift vegetation and microbial
communities along the elevation, thus affecting
microbial community structures as well as the
particularly sensitive N cycling in the Tibetan
grasslands.
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