
Remote Sensing of Environment 140 (2014) 279–293

Contents lists available at ScienceDirect

Remote Sensing of Environment

j ourna l homepage: www.e lsev ie r .com/ locate / rse
Comparison of satellite-based evapotranspiration models over terrestrial
ecosystems in China
Yang Chen a,b, Jiangzhou Xia a,b, Shunlin Liang b,c, Jinming Feng a,d, Joshua B. Fisher e, Xin Li f, Xianglan Li b,
Shuguang Liu g, Zhuguo Ma d, Akira Miyata h, Qiaozhen Mu i, Liang Sun j, Jianwei Tang k, Kaicun Wang a,b,
Jun Wen f, Yueju Xue l, Guirui Yu m, Tonggang Zha n, Li Zhang o, Qiang Zhang k, Tianbao Zhao d,
Liang Zhao p, Wenping Yuan a,q,⁎
a State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
b State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Beijing Normal University and Institute of Remote Sensing Applications, Chinese Academic of Science, Beijing 100875, China
c Department of Geographical Sciences, University of Maryland, College Park, MD 20742, USA
d Key Laboratory of Regional Climate-Environment Research for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
e Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
f Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
g State Engineering Laboratory of Southern Forestry Applied Ecology and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
h National Institute for Agro-Environmental Sciences, Tsukuba 305-8604, Japan
i College of Forestry & Conservation, The University of Montana, Missoula, MT 59812, USA
j Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
k Meteorological Bureau of Gansu Province, Lanzhou, Gansu 730000, China
l College of Information, South China Agricultural University, Guangzhou 510642, China
m Key Laboratory of Ecosystem Network Observation and Modeling, Synthesis Research Center of Chinese Ecosystem Research Network, Institute of Geographic Sciences and Natural Resources
Research, Chinese Academy of Sciences, Beijing 100101, China
n School of Resources and Environment, Beijing Forestry University, Beijing 100083, China
o Center for Earth Observation and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China
p Key Laboratory of Qinghai-Tibetan Plateau Biological Evolution and Adaptation, Northwest Institute of Plateau Biology, The Chinese Academy of Sciences, Xining, Qinghai 810008, China
q State Key Laboratory of Cryosphere Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, The Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
⁎ Corresponding author at: State Key Laboratory of
Resource Ecology, College of Global Change and Earth S
University, Beijing 100875, China. Tel.: +86 10 58807715

E-mail address: wenpingyuancn@yahoo.com (W. Yua

0034-4257/$ – see front matter © 2013 Elsevier Inc. All ri
http://dx.doi.org/10.1016/j.rse.2013.08.045
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 30 January 2013
Received in revised form 30 August 2013
Accepted 31 August 2013
Available online 28 September 2013

Keywords:
Evapotranspiration
Eddy covariance
Priestley–Taylor
Penman–Monteith
Evapotranspiration (ET) is a key component of terrestrial ecosystems because it links the hydrological, energy,
and carbon cycles. Several satellite-based ET models have been developed for extrapolating local observations
to regional and global scales, but recent studies have shown large model uncertainties in ET simulations. In
this study, we compared eight ET models, including five empirical and three process-based models, with the
objective of providing a reference for choosing and improvingmethods. The results showed that the eightmodels
explained between61 and 80% of the variability in ET at 23 eddy covariance towers in China and adjacent regions.
The mean annual ET for all of China varied from 535 to 852 mm yr−1 among the models. The interannual vari-
ability of yearly ET varied significantly between models during 1982–2009 because of different model
structures and the dominant environmental factors employed. Our evaluation results showed that the parame-
ters of the empirical methods may have different combination because the environmental factors of ET are not
independent. Although the three process-based models showed high model performance across the validation
sites, there were substantial differences among them in the temporal and spatial patterns of ET, the dominant
environment factors and the energy partitioning schemes. The disagreement among current ET models
highlights the need for further improvements and validation, which can be achieved by investigating model
structures and examining the ET component estimates and the critical model parameters.

© 2013 Elsevier Inc. All rights reserved.
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1. Introduction

Evapotranspiration (ET), which is thewater transferred from land to
the atmosphere via surface evaporation and plant transpiration, links
the terrestrial water, carbon, and surface energy exchanges (Wang &
Dickinson, 2012). It provides the atmospheric moisture that eventually
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returns to the surface as rain or snow and also consumes an enormous
amount of heat, which helps to cool the land surface (Bonan, 2008).
Therefore, accurate knowledge of the temporal and spatial variations
in ET is critical for understanding the interactions between land surfaces
and the atmosphere (Keane et al., 2002; Kustas & Norman, 1996),
improving water resource management (Meyer, 1999; Raupach, 2001)
and for investigating drought occurrence and impact (McVicar & Jupp,
1998). However, ET remains the most problematic component of
the water cycle because of the heterogeneity of the landscape and
the large number of controlling factors involved, including climate,
plant biophysics, soil properties, and topography (Friedl, 1996; Gash,
1987; Lettenmaier & Famiglietti, 2006).

Recently, numerous methods have been developed to estimate
terrestrial ecosystem ET, but inter-comparisons of global ET estimates
have revealed large model uncertainties (Vinukollu, Meynadier,
Sheffield, & Wood, 2011). The results of the Global Soil Wetness
Project-2 (GSWP-2) showed that mean annual global ET ranged from
272 to 441 mm yr−1 among 15 models, and the maximum estimate
was 1.5 times the minimum (Dirmeyer et al., 2006). Similarly, large
differences in global ET simulations have also been found among six
common land models and five global hydrological models, with values
ranging from 415 to 586 mm yr−1 (Haddeland et al., 2011). Moreover,
the uncertainties in global land ET from multiple remote sensing
methods, land surface models (LSMs) and reanalysis, are close to 50%
of total annual mean values (Jiménez et al., 2011; Mueller et al., 2011).

Satellite-based observations of land surface and atmospheric prop-
erties provide the most spatiotemporally consistent and direct esti-
mates of land surface properties (Jiménez, Prigent, & Aires, 2009), if
used appropriately in physically accurate and statistically robustmodels
(Liang, Li, & Wang, 2012). Some physical process ET models have been
developed based on the Penman–Monteith (Cleugh, Leuning, Mu, &
Running, 2007; Monteith, 1965; Mu, Heinsch, Zhao, & Running, 2007;
Mu, Zhao, & Running, 2011; Yuan et al., 2010) or Priestley–Taylor equa-
tions (Fisher, Tu, & Baldocchi, 2008; Miralles et al., 2011). However,
some of the process-based ETmodels are limited by their requirements
for extensive parameterizations of highly variable factors such as maxi-
mum stomatal conductance and soil water content (Yang et al., 2006).
The relatively large uncertainties in these models pose a challenge for
the accurate assessment of ET. Therefore, empirical regression models
have been used to upscale eddy covariance measurements (Jung et al.,
2010; Papale & Valentini, 2003; Yang et al., 2007; Zhou et al., 2008).

All ET models come with simplifying assumptions, and have differ-
ent formulations of the processes that control the land–atmosphere
water flux. There is diversity in both the complexity of model structures
and their formulation, often because they were designed for different
applications or purposes. The result is a wide range of estimates of
regional ET. Eachmodel, therefore, is a combination of scientific hypoth-
eses and choices, and its formulation depends on the inherent assump-
tions, driving data and parameter values. With the relatively recent
advent of available local observations of ET fluxes from eddy covariance,
as well as advances in our current understanding of the processes
controlling ET over regional scales, we can start to determine which
model is “best” at representing current fluxes, though by no means
are the available data sufficient to definitively answer that question.
Nevertheless, to move towards more robust estimates of ET dynamics,
it is necessary to compare estimates from a variety of model types,
as well as to evaluate estimates against the measurements that are
available (Vinukollu, Wood, Ferguson, & Fisher, 2011). Although it is a
challenge to interpret the internal mechanisms that cause the differ-
ences in ET estimates, there is also great value in using independent es-
timates to identify their advantages, disadvantages, and uncertainties.
However, most previous analyses were of limited spatial, temporal cov-
erage (Bormann, 2010; Li, Kang, Li, & Zhang, 2008; Su, McCabe, Wood,
Su, & Prueger, 2005; Werth & Avissar, 2004; Wilson, Hanson,
Mulholland, Baldocchi, & Wullschleger, 2001; Zhang, Kang, Li, &
Zhang, 2008).
In this study, we compared eight ETmodels, including five empirical
models and three process-basedmodels, using the ET measurements at
twenty-three eddy covariance sites within or around China. The prima-
ry objectives of this study are to (1) compare the performance of eight
ET models based on the ET observations; (2) assess the differences in
the temporal and spatial patterns of ET over China during 1982–2009;
(3) investigate the dominant environment variables of ET models; and
(4) analyze differences of model structure.

2. Methods and data

2.1. Evapotranspiration models

We examined five empirical models and three process-based
models in this study. The five empirical models include an artificial neu-
ral network (ANN) model (Papale & Valentini, 2003), a regression tree
(RT) model (Zhang et al., 2007), a support vector model (SVM, Yang
et al., 2006) and two regression models (Reg1 and Reg2) developed
by Wang, Wang, Li, Cribb and Sparrow (2007), and Wang, Dickinson,
Wild and Liang (2010). The three process-based models include two
Penman–Monteith type models (i.e., PM–MOD16 algorithm, Mu et al.,
2011; PM–Yuan model, Yuan et al., 2010) and one Priestley–Taylor
type model (PT–JPL, Fisher et al., 2008).

The ANN is composed of several elements called neurons or nodes.
The basic structure of a network consists of three layers: input layer,
hidden layer and output layer. The ANN adjusts the weight of internal
nodeswith training data.We used the back propagation artificial neural
network which was developed by Rumelhart, Hinton, and Williams
(1986) to find the best fit with the training data. The multilayer
perceptron (MLP), the most common and widely used feed-forward
network, was applied in this study. The ANN can represent any arbitrary
nonlinear function given sufficient complexity of the trained network,
and it can find relationships between different input samples. Most
importantly, the ANN is able to generalize a relationship from small sub-
sets of the data while remaining relatively robust in the presence of
noisy or missing inputs, and can adapt or learn in response to changing
environments (Dawson & Wilby, 1998).

Regression tree (RT) algorithms typically predict class membership
by recursively partitioning a dataset into a more homogeneous
membership (Xiao et al., 2010). RT models can account for a nonlinear
relationship between predictive and target variables and allow both
continuous and discrete variables. We used a modified regression tree
algorithm implemented in the commercial software called Cubist
(RuleQuest Research. Pty Ltd Company, 30 Athena Avenue, St Ives,
NSW 2075, Australia), which is a powerful tool for generating rule-
based predictive models.

Support vector machine (SVM) is a supervised non-parametric sta-
tistical learning technique. SVM can transform nonlinear regressions
into linear regressions by converting the low dimensional input space
into a higher dimensional feature space (Vapnik, 1998). It is widely
used to approximate regressions due to its ability to approximate any
nonlinear functions, especially when samples are limited. In previous
studies, SVM has been used to estimate many parameters, such as
wind speed, precipitation, ecological niches and evapotranspiration
(Drake, Randin, & Guisan, 2006; Mohandes, Halawani, Rehman, &
Hussain, 2004; Tripathi, Srinivas, &Nanjundiah, 2006; Yang et al., 2006).

TheReg1model estimates ET using surface net radiation, air temper-
atures and a vegetation index as the dominant variables controlling
evapotranspiration (Wang et al., 2007). It expresses the dependence
of ET variations on the vegetation in the simplest form that is consistent
with the Priestley–Taylor equationwhile incorporating the influence on
vegetation control on ET. Thismethod has beenused to predict ET under
awide range of soilmoisture contents and land cover types (Wang et al.,
2007).

The Reg2 model divides ET into energy control (ETe) and the atmo-
spheric control (ETa) components (Wang et al., 2010). A regression
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was used to determine ETe and ETa based on remote sensing and eddy
covariance flux data. This method adds empirical coefficients to a
Penman-based equation to include dependence on vegetation and soil
moisture. This allows ET to be estimated over a wide range of climate
conditions. This simple but accurate method can investigate decadal
variation in regional ET over the land (Wang et al., 2010). The Reg2
model uses surface net radiation, air temperature, wind speed and a
vegetation index as the model forcing data.

The first process-based algorithm (PT–JPL) was developed by Fisher
et al. (2008) based on the Priestley and Taylor (1972) equation, with
dynamic coefficients estimated from atmospheric moisture and
vegetation indices to downscale potential ET to actual ET. The total ET
is calculated as the sum of ETc (canopy transpiration), ETs (soil evapora-
tion) and ETi (interception evaporation). Each component is calculated
with the Priestley–Taylor equation and the corresponding ecophysio-
logical constraints.

The second process-based algorithm (PM–MOD16) was developed
by Mu et al. (2011) based on the Penman–Monteith equation
(Monteith, 1965) and as adapted by Cleugh et al. (2007). Mu et al. in-
cluded a soil evaporation component, using moisture and tempera-
ture constraints on stomatal conductance, and inferring canopy
conductance from the leaf area index. Mu et al. (2011) further modified
the ET algorithm by 1) simplifying the calculation of vegetation cover
fraction; 2) calculating ET as the sum of daytime and nighttime compo-
nents; 3) adding soil heat flux calculation; 4) improving estimates of
stomatal conductance, aerodynamic resistance and boundary layer re-
sistance; 5) separating dry canopy surface from thewet; and 6) dividing
the soil surface into saturated wet and moist surfaces. Model validation
at 46 eddy flux towers showed that the improved algorithm enhanced
accuracy (Mu et al., 2011).

The third process-based algorithm (PM–Yuan) is also a Penman–
Monteith type model as modified by Yuan et al. (2010). In the PM–

Yuan model, the temperature constraint for stomatal conductance
follows the equation detailed by June, Evans, and Farquhar (2004)
and in PT–JPL from Fisher et al. (2008). The Beer–Lambert law is
used to exponentially partition net radiation between the canopy
and the soil surface (Ruimy, Kergoat, Bondeau, & intercomparison,
1999). This method improved the ET estimates at most of the 54
Fig. 1. Names, locations and vegetation types of the twenty-three EC sites. DBF: deciduous bro
evergreen needleleaf forests; CRO: croplands; GRA: grasslands; MF: mixed forests.
flux towers compared with the ET estimates of the original RS–PM
algorithm (Yuan et al., 2010).

2.2. Data at eddy covariance sites

Measurements of eddy covariance (EC) were used to examine
model performance. Twenty-three EC sites, from ChinaFlux, AsiaFLUX,
LathuileFLUX and Arid/Semi-arid experimental observation synergy
and integration (Guan, Huang, Guo, Bi, & Wang, 2009; Huang, Guan, &
Ji, 2012; Huang et al., 2008; Li et al., 2009; Zhang, Zeng, & Yao, 2012),
were included in this study (Fig. 1). The sites covered seven major
terrestrial biomes: deciduous broadleaf forests (DBF), mixed forests
(MF), evergreen needleleaf forests (ENF), evergreen broadleaf forests
(EBF), deciduous needleleaf forests (DNF), grasslands (GRA) and crop-
lands (CRO). Daily solar radiation (Rg), net radiation (Rn), air tempera-
ture (Ta), relative humidity (Rh), wind speed (Ws), atmospheric
pressure (P), vapor pressure deficit (VPD) and site elevation were
used to drive the models.

It has been noted that the sum of sensible heat (H) and latent heat
(LE) as measured by the EC method is generally less than the available
energy (Foken, 2008). Assuming that the ratio of sensible heat to ET is
correct, LEmeasurements can be corrected as follows (Jung et al., 2010):

LEcor ¼ Rn−Gð Þ= Huncor þ LEuncorð Þ � LEuncor ð1Þ

where LEcor is the corrected latent heat, Rn is the net radiation, G is the
soil heat flux, Huncor is the uncorrected sensible heat and LEuncor is the
uncorrected latent heat. The results showed that energy closure was
improved 18–48% after this correction (data not shown).

Normalized difference vegetation index (NDVI) and leaf area index
(LAI) for the EC towers were determined from theModerate Resolution
Imaging Spectroradiometer (MODIS). MODIS ASCII data were used in
this study and generated from MODIS Collection 5 data, which were
downloaded directly from the Oak Ridge National Laboratory Dis-
tributed Active Center (ORNL DAAC) web site (http://daac.ornl.gov/
MODIS/). The 8-day MODIS LAI (MOD15A2) and 16-day MODIS NDVI
(MOD13A2) data at 1 × 1 km spatial resolution were the basis for
model verification in the flux sites. Only the NDVI and LAI values of
adleaf forests; DNF: deciduous needleleaf forests; EBF: evergreen broadleaf forests; ENF:

http://daac.ornl.gov/MODIS/
http://daac.ornl.gov/MODIS/
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the pixels containing the tower were used. Quality control (QC) flags,
which signal cloud contamination in each pixel, were examined to
screen and reject poor quality NDVI and LAI data.

2.3. Data at regional scale

When estimating ET at the regional scale for all eight models, we
used datasets for monthly total radiation (Rg), net radiation (Rn),
air temperature (Ta), relative humidity (Rh), wind speed (Ws), and
air pressure (P) from the MERRA (Modern Era Retrospective-
Analysis for Research and Applications) archive for 1982–2009
(Global Modeling & Assimilation Office, 2004). MERRA is a NASA
reanalysis for the satellite era that uses a new version of the Goddard
Earth Observing System Data Assimilation System Version 5 (GEOS-5).
The MERRA reanalysis dataset has been validated at the global scale
using surfacemeteorological data to evaluate the uncertainty of various
meteorological factors (i.e., temperature, radiation, humidity, and ener-
gy balance) (Global Modeling & Assimilation Office, 2004). Compared
with previous reanalyses, such as Clouds and the Earth's Radiant Energy
System (CERES), NCEP/NCAR Reanalysis 1 (NCEP1), NCEP-DOE AMIPII
Reanalysis (NCEP2), ECMWF 40 Year Re-analysis (ERA-40) and the
Japanese 25-year Reanalysis (JRA-25) and North American Regional
Reanalysis (NARR), MERRA showed comparable results for the global
water and energy cycle (Chen & Bosilovich, 2008; Kennedy, Dong, Xi,
Xie, & Chen, 2011). Detailed information on theMERRA dataset is avail-
able at the NASA website (http://gmao.gsfc.nasa.gov/research/merra).

We used the AVHRR and MODIS LAI and NDVI datasets to generate
the combined LAI and NDVI from 1982 to 2009. The AVHRR GIMMS
NDVI is based on a composite of monthly maximum values of biweekly
data with a 0.0727 degree spatial resolution and covers the period from
1982 to 2006. We used maximum value composite to minimize atmo-
spheric and cloud contamination effects on NDVI data (Holben, 1986).
Global 8-day MODIS NDVI (MOD13A2) data were used and aggregated
into monthly NDVI data. Quality control (QC) flags were examined to
screen and reject poor quality NDVI data. We filled in the missing or
unreliable NDVI at each 1-km MODIS pixel based on their correspond-
ing quality assessment data fields as proposed by Zhao, Heinsch,
Nemani, and Running (2005). To be consistent with the spatial
Fig. 2. Observed evapotranspiration (ET) at eddy covariance sites versus predicted ET from eig
resolution of the AVHRRNDVI data, MODIS NDVI datawere first spatial-
ly aggregated to a resolution of approximately 0.0727°. The following
procedures were then used to combine the two series (Zhang, Kimball
et al., 2008): (1) regress monthly MODIS NDVI on corresponding
AVHRRNDVI for the overlapping period from2000 to 2006using simple
linear regression on a pixel-by-pixel basis; (2) use the resulting regres-
sion equations to adjust the AVHRR NDVI time series and compute an
integrated AVHRR–MODIS NDVI monthly time series from 1982 to
2006. Similarly, 8-day MODIS LAI (MOD15A2) (Myneni et al., 2002) and
monthly AVHRR LAI (Myneni, Nemani, & Running, 1997) were used in
this study, and the same procedures were implemented to generate
a continuous LAI dataset for 1982–2009. The spatial resolution of
all the forcing data and the model simulations is 0.1°, covering the
terrestrial ecosystem area of China as defined by the MODIS Land
Cover product (MOD12Q1).

2.4. Statistical analysis

A linear trend analysis was used to analyze regional trends in ET and
meteorological and vegetation variables (yt) using a linear model (yt =
bxt + y0, Zhang et al., 2009), where t, b and y0 are the time, slope and
intercept of the regression line, respectively. The statistic b/SE(b)
(where SE(b) is the standard deviation of b) has Student's t-distribution,
and Student's t-test was used to analyze and classify the significance
of the trend as ‘weak’, ‘moderate’, or ‘strong’. When |b/SE(b)| b 1.0,
i.e., b is within one standard deviation, the trend is classified as weak;
when 1.0 ≤ |b/SE(b)| ≤ t0.10 where t0.10 is the 10% critical value of
Student's t-distribution, the trend is classified as moderate; when |
b/SE(b)| ≥ t0.10, the trend is statistically significant and classified as
strong. These categories were further stratified into six classes
according to the slopes of the statistical trends: positive weak, posi-
tive moderate, positive strong, negative weak, negative moderate,
and negative strong.

The following metrics were used to evaluate model performance in
this study. The coefficient of determination (R2) represented how
much variation in the observations was explained by the model. The
root mean square error (RMSE) was used to quantify the difference be-
tween simulated and observed values. The Kling–Gupta efficiency (KGE,
ht models. The solid line is the 1:1 line and the short dashed lines are the regression lines.

http://gmao.gsfc.nasa.gov/research/merra
image of Fig.�2
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Gupta, Kling, Yilmaz, & Martinez, 2009) was used to comprehensively
evaluate the model performance. The KGE accounts for the correlation,
variability error and bias error and incorporates these criteria into a sin-
gle multi-objective criterion, and is calculated as follows:

KGE ¼ 1−ED ð2Þ

ED ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r−1ð Þ2 þ α−1ð Þ2 þ β−1ð Þ2

q
ð3Þ
Fig. 3. Comparison of ET observations (ETo) and simulations of eight models at 23 EC sites: m
(c) and the Kling–Gupta efficiency (KGE) (d).
α ¼ σ s=σo ð4Þ

β ¼ μs=μo ð5Þ

where ED is the Euclidian distance from the ideal point, r is the linear
correlation coefficient between simulated and the observed values, μo
and σo are the mean and standard deviation of the observations, μs
and σs are the mean and standard deviation of the simulations, α is a
measure of relative variability in the simulated and observed values,
ean values (a), model determination coefficient (R2) (b), root mean square error (RMSE)

image of Fig.�3


Table 1
Relationship between the performances of three advanced statistical models with the
quantity of training data.

Data rate RT SVM ANN

RMSE
(mm day−1)

R2 RMSE
(mm day−1)

R2 RMSE
(mm day−1)

R2

20% 0.86 0.53 0.97 0.52 2.22 0.16
40% 0.76 0.62 0.86 0.55 0.94 0.49
60% 0.69 0.69 0.85 0.56 1.25 0.32
80% 0.70 0.68 0.86 0.59 0.81 0.58
100% 0.71 0.67 0.66 0.74 1.77 0.68

Data rate: the fraction of selected training data to all original training data.
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and β is the ratio of the mean values of simulations and observations.
The values of the three components are r = 1, α = 1 and β = 1 with-
out any simulation errors. Therefore the ‘ideal’ KGE value is 1.

2.5. Model calibration and experiments with empirical models

In this study, we used three machine learning methods (ANN, SVM
and RT). To train these three models, we randomly selected half of the
measurements from all sites (738 data samples) and used the other
half of themeasurements for model validation. To examine the impacts
of parameter calibration on model performance, we used the same
datasets to recalibrate parameters and validate the two regression
models (i.e., Reg1 and Reg2).

3. Results

3.1. Model validation

At the site scale, the model performance differed substantially
among the eight models. Generally, the eight models explained 61–
80% of ET variability over all measurements (Fig. 2). PT–JPL showed
the highest coefficient of determination (R2 = 0.80), followed by
Reg2, Reg1, SVM and PM–Yuan with R2 values ranging from 0.74 to
0.76. Except for the PT–JPL model, all models slightly underestimated
the measurements (Fig. 2). The averaged ET simulations of SVM, Reg1,
Reg2, PT–JPL and PM–Yuan were very similar to the observations
(Fig. 3a). At the individual sites, the Reg1, Reg2, PT–JPL and PM–Yuan
presented higher R2 values and a lower RMSE than others (Fig. 3b, c).
Although the KGE median values for all models were close (Fig. 3d),
ANN, RT, SVM and PM–MOD16 showed large differences among sites,
which implied inconsistent model performance over the study sites.
Overall, according to KGE values, the performances of Reg1, Reg2, PT–
JPL and PM–Yuan were better (Fig. 3d).

The three advanced statistical models (ANN, SVM and RT) had the
poorest performance, and the average R2 values of these models over
Fig. 4. Spatial patterns of ET simulations derived from Reg1 models wi
23 EC sites were 0.68, 0.74 and 0.67, respectively (Table 1). In general,
the performance of the statistical models strongly depended on the
quantity and representativeness of the training datasets. To examine
the impacts of training datasets, we conducted a series of model exper-
iments by changing the quantity of training data.We randomly selected
20, 40, 60 and 80%measurements from the original training datasets to
conduct model trainings, and used the original validation datasets. The
results showed that model performance decreased significantly with
fewer training samples (Table 1). For example, SVM explained 74% of
the variability in ET using full training dataset, but only 52% of the vari-
ability using the 20% training dataset (Table 1).

Similarly, the performance of the two other empirical models (Reg1
and Reg2 models) was also highly related to the regression coefficients.
For example, the original parameters of Reg1 were calibrated over the
Southern Great Plains (SGP) area of the United States, and the parame-
ter values of a0, a1 and a2were set as 0.1505, 0.45 and 0.004, respectively
(Wang et al., 2007). When the three parameters were recalibrated in
this study, the parameter values increased to 0.1077, 0.395 and
0.0104. Accordingly, the annual mean ET changed to 673 mm yr−1 as
opposed to the 559 mm yr−1 derived using the original model param-
eters (Fig. 4). This is likely becauseWang et al. (2007) did not fully con-
sider the impact of soil moisture on ET, which has been improved
(Wang & Liang, 2008).

3.2. Spatial and temporal differences in evapotranspiration

All eight models showed similar spatial patterns of ET, with decreas-
ing ET from southeast to northwest China (Fig. 5). The annual mean ET
was highest in the humid tropics and sub-tropics, intermediate in
temperate regions and the lowest in both cold and arid regions, where
either temperature or precipitation was the limiting factors. Comparing
the models, however, revealed substantial differences in ET estimates
among the eight models, and the mean annual ET over all of China
ranged from 535 to 852 mm yr−1 among all models. The PT–JPL
model simulated the highest ET over nearly all regions. Its mean annual
ET was 852 mm yr−1 which was 1.59 times the lowest ET estimates
from PM–MOD16. Overall, the largest difference in ET estimates oc-
curred in tropical and humid areas with high levels of ET (Fig. 5). All
eight models showed strong seasonality in ET (Fig. 6), and they cap-
tured the seasonality of averaged ET. All of the models had a similar
monthly variation,withmaxima in the summer andminima in thewin-
ter. However, there was substantial variation in the monthly ET among
models.

The long-term changes in ET differed among eight models. Four of
eight models (i.e., SVM, Reg1, Reg2 and PM–Yuan) showed a significant
increase in ET from 1982 to 2009, with the trends ranging from 0.62 to
2.55 mm yr−1, and the largest increase in ET was found by the SVM
model. The other two models presented relatively constant long-term
th original parameter values (a) and recalibrated parameters (b).

image of Fig.�4


Fig. 5. Spatial patterns of mean annual ET simulations from 1982 to 2009 and standard deviation of mean annual ET from eight models.
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Fig. 6. Seasonal variability of the mean ET simulations from eight models.

Table 2
Long-term change trends of mean annual ET for vegetated land area of China from 1982 to
2009.

Model a (mm yr−1) b (mm) p

ANN −0.16 737.68 0.63
SVM 2.55 674.93 b0.01
RT 0.26 686.74 0.19
Reg1 1.47 639.67 b0.01
Reg2 0.62 548.72 0.01
PT–JPL 0.36 847.29 0.18
PM–Yuan 0.78 572.72 b0.01
PM–MOD16 −0.04 536.09 0.88

a and b indicate the slope and intercept of linear regression equations between annual
mean ET (mm yr−1) and year.
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change (i.e., RT and PT–JPL), and ANN and PM–MOD16 showed slightly
decreased ET (0.16 mm yr−1, p = 0.63 and 0.04 mm yr−1, p = 0.88)
(Fig. 7; Table 2). In terms of spatial pattern, the differences in the
long-term ET were found over almost the entire territory of China.
SVM, RT, Reg1, Reg2, PT–JPL and PM–Yuan had larger areaswith strong-
ly increasing ET (Fig. 8). In particular, 89% of the area was dominated by
the positive ET trend in Reg1. In contrast, positive trends in ET
accounted for approximately 49 and 46% of China according to the
PM–MOD16 and ANN models. No consistent ET trends were found
amongallmodels throughout China, and only 38% of regionshad consis-
tent interannual variability trends in more than 4 models (Fig. 8i). For
example, over northern China, Reg1, PM–Yuan and PM–MOD16 simu-
lated strongly positive ET trends (Fig. 8d, g, h); however, the opposite
was found in RT, Reg2 and PT–JPL (Fig. 8c, e, f). Relatively consistent
change trendswere found in southern China, with increased ET indicat-
ed by most models (Fig. 8). In northeast China, there were again signif-
icant differences in the trends among the models.

The three process-based models simulated the ET components sep-
arately. PT–JPL and PM–MOD16 separated ecosystem ET into canopy
transpiration (ETc), soil evaporation (ETs) and interception evaporation
from thewet plant and soil surfaces (ETi), and the PM–Yuanmodel only
simulated ETc and ETs. PT–JPL had the highest simulations of ETc and ETs
among the three models. In contrast, PM–MOD16 showed the lowest
ETc and ETs. ETi estimates from PT–JPL and PM–MOD16 were similar
in magnitude and interannual variation (Fig. 9). The long-term trends
of the ET components were consistent among the models. In general,
all three models showed increased ETc and decreased ETs and ETi. The
three ET components showed a relatively consistent trend of decreasing
magnitude from south to north (data not shown).
Fig. 7. Interannual variability of the ET simulations of eight models from 1982 to 2009.
Energy partitioning was the most important factor in determining
the magnitude and fraction of ET components. Both the PT–JPL and
PM–Yuanmodels used the Beer–Lambert law to exponentially partition
net radiation between the canopy and the soil surface. Net radiation
is partitioned between the canopy and soil surface based on the veg-
etation cover fraction in the PM–MOD16model, and MOD15A2 FPAR
(the Fraction of Absorbed Photosynthetically Active Radiation) was
used as a surrogate for vegetation cover fraction. Moreover, PM–

MOD16 also subtracts soil heat flux from the available evaporation en-
ergy. The results indicate similar spatial patterns of energy partitioning
within PT–JPL and PM–Yuan models, with both differing from those of
PM–MOD16 (Fig. 9). The latter simulated a large energy allocation to
vegetation canopy and lower fraction to soil surface (Fig. 9). As a result
of differences in energy partitioning, the contributions of the compo-
nents to the total ET differed substantially among the three models.
PM–Yuan model separates ET into vegetation canopy transpiration
and soil evaporation; thus, the ratio of ETs to ET was larger than those
of PM–MOD16 and PT–JPL models (Fig. 9). The fraction for ETi of the
PM–MOD16 was almost double that of the PT–JPL model.

3.3. Differences in environmental regulations of the ET models

ET was regulated by many factors, including solar radiation, surface
moisture, and air temperature. In this study, several models, including
ANN, SVM, Reg2, PT–JPL and PM–Yuan showed strongly positive corre-
lations between ET and solar radiation over south China, and a positive
correlation with water availability over north China (Fig. 10), which
matched spatial patterns of dryness as it increases from south to north
in China. Air temperature regulated the variability in ET in only some
of the models. In the Reg1 model, air temperature drove the ET varia-
tions in the northeast, on the Tibetan plateau and in the central regions
of China (Fig. 10). Only a few weak positive temperature contributions
to ET were found over the cold areas of the Tibetan plateau and Qinghai
Provincewithin RT, PT–JPL and PM–Yuan.On the other hand, vegetation
plays an important role in regulating ecosystemET inmost ETmodels in
the current study. Reg1 and Reg2 positively correlated vegetation with
ET over most regions (Fig. 10). PM–Yuan and PM–MOD16 showed pos-
itive correlations of LAI with ET except in parts of Tibet and Qinghai
province (Fig. 10).

Differences in model-dominated variables resulted in significant
differences in the interannual variation of ET. Obvious spatial trends in
long-term ET were substantially different over the 28 years. Fig. 10
shows that the key meteorological variables related with ET such as
radiation, atmospheric humidity and air temperature all changed signif-
icantly overmuch of China. Correlation analyses showed strong positive
relationships betweenET estimates andNDVI, Ta and Rnwithin the Reg1
model. These three environmental variables increased strongly be-
tween 1982 and 2009 (Fig. 11),which resulted in interannual variations
in ET. Over northeast China, ET estimationswere significantly correlated
with air humidity in four models (PT–JPL, Reg2, RT and ANN), such that
decreased air humidity led to consistent ET changes in these four
models (Fig. 11).

image of Fig.�6
image of Fig.�7


Fig. 8. Spatial patterns of long-term ET trends of eight models from 1982 to 2009 (a–h), number of models with consistent ET trend (i) and standard deviation of changed magnitude
(mm yr−1) (j). The inside panels indicate the fraction of various change trends.
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Fig. 9. The interannual variability on magnitude and fractions of ET components and energy component fraction at the three process-basedmodels. (a–c) show the interannual of canopy
transpiration (ETc), soil evaporation (ETs) and intercepted surface evaporation (ETi); (d–f) show the ratio of ETc, ETs and ETi to total ecosystem ET; (g–h) show the energy ratio to canopy
(Rnc) and soil surface (Rns).
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4. Discussion

4.1. Model performance

The objective of this paper was to evaluate eight ET models over
China based on EC measurements. Three machine learning methods
(i.e., ANN, RT and SVM) were included in the comparison and had the
lowest model performances. These three methods build functional
relationships between the response (in this case ET) and predictor var-
iables, while ignoring explicit biophysical mechanisms. These machine
learning methods construct an ET algorithm based only on data and
are typically data-limited. This “data limitation” refers to the quantity,
quality, and representativeness of the training dataset (Jung et al.,
2011). Our analyses found that the ability of ANN, SVM and RT
depended highly on the size of the training dataset (Table 1). Previous
studies have supported our conclusion and highlighted that statistical
models are confined to the data dimensions (e.g., space, time, climate,
environmental behavior) in which they are trained; thus, extrapolating
outside those dimensions may not be robust and may lead to large
uncertainties (Fisher et al., 2009). Twenty-three EC sites are insufficient
to represent the major vegetation types and climate regions of China,
whichwas themain cause of thepoor performance of the threemachine
learning methods.

Previous research has indicated that empirical models need
recalibration to transfer to other areas (Feddes & Lenselink, 1994). Our
validation results showed that the two empirical methods, Reg1 and
Reg2, had a higher R2 value and a lower RMSE. These two empirical
models have been developed and validated primarily with ET data col-
lected by AmeriFlux. Our evaluation results showed that these methods
could be safely applied in China. However, our results also showed that
the parameters of the empiricalmethodsmight have different combina-
tions. This is because the environmental factors of ET are not indepen-
dent, i.e., air temperature and solar radiation are closely related.

The three process-basedmodels exhibited larger inter-model differ-
ences relative to the five empirical models, and the largest ET estimate,
derived by the PT–JPL model, was 1.69 times of that of the PM–MOD16
model, which gave the smallest ET estimate. These results were unex-
pected because the process-based models were developed by integrat-
ing mechanistic processes. These three process-based models have
been evaluated and validated globally. In this study, no efforts were
made to calibrate the model parameters, and the default parameter
values from the original model were used. Therefore, they were sup-
posed to represent relatively similar and consistent regional ET simula-
tions. The PT–JPL model has no empirically-calibrated parameters, and
is therefore highly sensitive to the quality and biases of the input data.
For example, Fisher et al. (2008) used SRB net radiation data from the
Global Energy and Water Cycle Experiment (GEWEX) for their global
product. In this study, MERRA net radiation was used to drive regional
ET simulations. Comparison of the GEWEX and MERRA Rn showed
that the latter significantly overestimated Rn at 23 EC sites (Fig. 12a),
and aggregated over the whole of China, MERRA Rn was almost 2.76
times the GEWEX value; subsequently, PT–JPL, as driven by MERRA Rn
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Fig. 10. Spatial patterns of coefficient of determination (R) between ET estimations and environmental variables. The grids with insignificant correlations weremarked in gray, and other
colors indicate significant correlations (p b 0.05).
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also produced overestimates. In contrast, PM–Yuan and PM–MOD16
were developed and calibrated based on DAO and MERRA reanalysis
datasets, and both of them used the Goddard Earth Observing System
(GEOS) Data Assimilation System (Mu et al., 2011; Yuan et al., 2010).
Therefore, we did not find the anomalously high ET overestimation in
this study compared with applications of the original models. These
results imply that, for high accuracy ET, either the forcing data to the
ET algorithms must be biased-adjusted or that the models must be
calibrated to correct for input biases.

Moreover, previous studies have suggested that the mismatch be-
tween ET estimates based on remote sensing and tower observations
makes process-based model calibration challenging. McCabe and
Wood (2006) investigated the impact of errors in ET retrievals that
resulted from the scale of the remote sensing inputs, and showed that
the errors in large regional ET estimates based on tower observations
were caused by land surface heterogeneity. Currently, only ECmeasure-
ments can be used for large scale direct ET validation, so scaling beyond
an EC footprint is largely unknown (Vinukollu et al., 2011). Therefore,
additional work is required to improve the model calibration and
validation. For example, some studies are using inferred evaporation
as calculated by climatological precipitation and basin discharge to in-
vestigate model performance (Jung et al., 2010; Vinukollu et al., 2011).

All three process-based models developed algorithms to quantify
the variation in the components of ET. However, no sub-component
was validated because of lack of measurements. Stable isotope and sap
flow measurements can be used to partition plant transpiration and
soil evaporation (Brunel, Walker, Dighton, & Monteny, 1997; Swanson,
1994), but only a fewmeasurementswere used to validate the ETmodels
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Fig. 11. Spatial patterns of long-term variation trends in annual mean total radiation (Rg), normalized difference vegetation index (NDVI), atmosphere pressure (P), net radiation (Rn), air
temperature (Ta), wind speed (Ws) and vapor pressure deficit (VPD) over the terrestrial area of China.
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in this study. Among the three process-based models in this study, the
accuracy of ET sub-components was examined only for PT–JPL and only
at three sites (Fisher et al., 2008). Therefore, it is necessary to collect ET
component measurements at more sites and over wider geographical
regions for more thorough model validation.

4.2. Differences in environmental regulation of ET models

Water and energy have long been considered as the most im-
portant variables driving ecosystem evapotranspiration at both
hydroclimatologic and agronomic scales of space and time (Donohue,
Roderick, & McVicar, 2007). In this study, most of the models found
strong correlations between ET simulations and the radiation over the
cloudy south China and the humidity over the dry north of China.
These results were consistent with previous studies. For example,
McVicar et al. (2012) mapped the global distribution of areas where
ET was energy-limited or water-limited based on the long-term ratio
of annual average precipitation to potential ET, and the results indicated
that energy and water control ET in southern and northern China, re-
spectively. In particular, Reg1 generated positive correlations between
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Fig. 12. Comparison of observed Rn at EC sites with MERRA production (a). The solid line is 1:1 line and the short dash line is regression line. Comparison of observed ET at EC sites with
estimates driven by MERRA data (b).
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radiation and ET simulations over south and north China (Fig. 10)
because it does not integrate water limitation, which resulted in the
same trend of interannual variability of ET as radiation significantly
increased ET over most of China (Figs. 7, 11).

Wind speed iswidely recognized as a criticalmeteorological variable
that varies with the temporal and spatial changes in ET (Sellers et al.,
1997). However, most of the ETmodels were formulated not to include
wind speed as a driver because wind speed is not globally observable.
Other environmental variables can be derived from satellite datasets,
but wind speed data must come from a reanalysis dataset, which
would reduce the consistency and accuracy of the model forcing data.
In this study, only the Reg2 model required wind speed as a model
input. A recent study quantified the sensitivity of rates of evaporative
demand to changes inwind speed and found thatwind speed contribut-
ed substantially to declining evaporation rates (McVicar et al., 2012;
Sheffield, Wood, & Roderick, 2012). Our results showed significant
interannual variation in wind speed over most of the regions (Fig. 11),
therefore ignoring wind speed may create large errors in long-term
changes in ET.

Temperature is another important meteorological factor influencing
evapotranspiration because it can be used as a surrogate for atmo-
spheric demand (Jung et al., 2010). Many ET models were developed
from temperature based models (Hamon, 1961; Kharrufa, 1985;
Thornthwaite, 1948). All of the models in this study integrated the
impact of temperature on ET. Our results showed that air temperature
dominated the ET variation in the northeast and the Tibetan plateau
of China for the most of the models (Fig. 10). This was consistent with
previous studies. For example, one previous global study found temper-
ature to exert significant control over ET and be generally positively
related to ET in high latitude and cold areas (Iwasaki, Saito, Kuwao,
Maximov, & Hasegawa, 2009). Therefore, understanding the response
of evapotranspiration to global temperature change is very important
so that future ecosystem water cycles can be predicted for those
regions.

5. Summary

In this study, we compared eight evapotranspirationmodels, includ-
ing five empirical models and three process-based models, based on 23
eddy covariance sites in China. The results showed that the eightmodels
explained between 61 and 80% of the variability in ET. The process-
basedmodels performed better than the five empirical models. The em-
pirical models were strongly dependent on the training datasets. Re-
gionally, although all eight models indicated similar spatial patterns,
with decreased ET from southeast to northwest, there were substantial
differences in the magnitude of ET. Mean annual ET estimates ranged
from 535 to 852 mm yr−1, and models differed more in tropical and
humid areas. Four of the eight models (SVM, Reg1, Reg2 and PM–

Yuan) showed significant increases in ET from 1982 to 2009, but the
other models (RT, PT–JPL and PM–MOD16) presented constant long-
term values or decreasing trends. The differences in model structures
and their dominant variables were the major cause of ET simulations
at both site and region scales. The three process-based models applied
different energy partition equations, resulting in substantial differences
in the simulations of ET components. Overall, the dominant driving
variables differed among the eight models, which caused significant
differences in their interannual variability. Our results showed that it
is necessary to examine model structure to improve the ET component
estimations and critical model parameters.
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