NWIPB OpenIR
The microbial gene diversity along an elevation gradient of the Tibetan grassland
Yang, Yunfeng ; Gao, Ying ; Wang, Shiping ; Xu, Depeng ; Yu, Hao ; Wu, Linwei ; Lin, Qiaoyan ; Hu, Yigang ; Li, Xiangzhen ; He, Zhili ; Deng, Ye ; Zhou, Jizhong
2014-02-01
发表期刊ISME JOURNAL ; Yang, YF; Gao, Y; Wang, SP; Xu, DP; Yu, H; Wu, LW; Lin, QY; Hu, YG; Li, XZ; He, ZL; Deng, Y; Zhou, JZ.The microbial gene diversity along an elevation gradient of the Tibetan grassland,ISME JOURNAL,2014,8(2):430
摘要Tibet is one of the most threatened regions by climate warming, thus understanding how its microbial communities function may be of high importance for predicting microbial responses to climate changes. Here, we report a study to profile soil microbial structural genes, which infers functional roles of microbial communities, along four sites/elevations of a Tibetan mountainous grassland, aiming to explore the potential microbial responses to climate changes via a strategy of space-for-time substitution. Using a microarray-based metagenomics tool named GeoChip 4.0, we showed that microbial communities were distinct for most but not all of the sites. Substantial variations were apparent in stress, N and C-cycling genes, but they were in line with the functional roles of these genes. Cold shock genes were more abundant at higher elevations. Also, gdh converting ammonium into urea was more abundant at higher elevations, whereas ureC converting urea into ammonium was less abundant, which was consistent with soil ammonium contents. Significant correlations were observed between N-cycling genes (ureC, gdh and amoA) and nitrous oxide flux, suggesting that they contributed to community metabolism. Lastly, we found by Canonical correspondence analysis, Mantel tests and the similarity tests that soil pH, temperature, NH4+-N and vegetation diversity accounted for the majority (81.4%) of microbial community variations, suggesting that these four attributes were major factors affecting soil microbial communities. On the basis of these observations, we predict that climate changes in the Tibetan grasslands are very likely to change soil microbial community functional structure, with particular impacts on microbial N-cycling genes and consequently microbe-mediated soil N dynamics.; Tibet is one of the most threatened regions by climate warming, thus understanding how its microbial communities function may be of high importance for predicting microbial responses to climate changes. Here, we report a study to profile soil microbial structural genes, which infers functional roles of microbial communities, along four sites/elevations of a Tibetan mountainous grassland, aiming to explore the potential microbial responses to climate changes via a strategy of space-for-time substitution. Using a microarray-based metagenomics tool named GeoChip 4.0, we showed that microbial communities were distinct for most but not all of the sites. Substantial variations were apparent in stress, N and C-cycling genes, but they were in line with the functional roles of these genes. Cold shock genes were more abundant at higher elevations. Also, gdh converting ammonium into urea was more abundant at higher elevations, whereas ureC converting urea into ammonium was less abundant, which was consistent with soil ammonium contents. Significant correlations were observed between N-cycling genes (ureC, gdh and amoA) and nitrous oxide flux, suggesting that they contributed to community metabolism. Lastly, we found by Canonical correspondence analysis, Mantel tests and the similarity tests that soil pH, temperature, NH4+-N and vegetation diversity accounted for the majority (81.4%) of microbial community variations, suggesting that these four attributes were major factors affecting soil microbial communities. On the basis of these observations, we predict that climate changes in the Tibetan grasslands are very likely to change soil microbial community functional structure, with particular impacts on microbial N-cycling genes and consequently microbe-mediated soil N dynamics.
文献类型期刊论文
条目标识符http://210.75.249.4/handle/363003/37410
专题中国科学院西北高原生物研究所
推荐引用方式
GB/T 7714
Yang, Yunfeng,Gao, Ying,Wang, Shiping,et al. The microbial gene diversity along an elevation gradient of the Tibetan grassland[J]. ISME JOURNAL, Yang, YF; Gao, Y; Wang, SP; Xu, DP; Yu, H; Wu, LW; Lin, QY; Hu, YG; Li, XZ; He, ZL; Deng, Y; Zhou, JZ.The microbial gene diversity along an elevation gradient of the Tibetan grassland,ISME JOURNAL,2014,8(2):430,2014.
APA Yang, Yunfeng.,Gao, Ying.,Wang, Shiping.,Xu, Depeng.,Yu, Hao.,...&Zhou, Jizhong.(2014).The microbial gene diversity along an elevation gradient of the Tibetan grassland.ISME JOURNAL.
MLA Yang, Yunfeng,et al."The microbial gene diversity along an elevation gradient of the Tibetan grassland".ISME JOURNAL (2014).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yang, Yunfeng]的文章
[Gao, Ying]的文章
[Wang, Shiping]的文章
百度学术
百度学术中相似的文章
[Yang, Yunfeng]的文章
[Gao, Ying]的文章
[Wang, Shiping]的文章
必应学术
必应学术中相似的文章
[Yang, Yunfeng]的文章
[Gao, Ying]的文章
[Wang, Shiping]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。