NWIPB OpenIR
Altitudinal variation of ecosystem CO2 fluxes in an alpine grassland from 3600 to 4200 m
Hirota, Mitsuru ; Zhang, Pengcheng ; Gu, Song ; Du, Mingyuan ; Shimono, Ayako ; Shen, Haihua ; Li, Yingnian ; Tang, Yanhong
2009-12-01
发表期刊JOURNAL OF PLANT ECOLOGY ; Mitsuru Hirota;Pengcheng Zhang;古松;杜明远;Ayako Shimono;Haihua Shen;李英年;唐艳鸿.Altitudinal variation of ecosystem CO2 fluxes in an alpine grassland from 3600 to 4200 m,Journal of Plant Ecology,2009,2(4):197-205
摘要Aims: Recent studies have recognized the alpine grasslands on the Qinghai–Tibetan plateau as a significant sink for atmospheric CO2. The carbon-sink strength may differ among grassland ecosystems at various altitudes because of contrasting biotic and physical environments. This study aims (i) to clarify the altitudinal pattern of ecosystem CO2 fluxes, including gross primary production (GPP), daytime ecosystem respiration (Redaytime) and net ecosystem production (NEP), during the period with peak above-ground biomass; and (ii) to elucidate the effects of biotic and abiotic factors on the altitudinal variation of ecosystem CO2 fluxes. Methods: Ecosystem CO2 fluxes and abiotic and biotic environmental factors were measured in an alpine grassland at four altitudes from 3600 to 4200 m along a slope of the Qilian Mountains on the northwestern Qinghai–Tibetan Plateau during the growing season of 2007. We used a closed-chamber method combined with shade screens and an opaque cloth to measure several carbon fluxes, GPP, Redaytime and NEP, and factors, light-response curve for GPP and temperature sensitivity of Redaytime. Above- and below-ground biomasses and soil C and N contents at each measurement point were also measured. Important Findings: (i) Altitudinal pattern of ecosystem CO2 fluxes: The maximum net ecosystem CO2 flux (NEPmax), i.e. the potential ecosystem CO2 sink strength, was markedly different among the four altitudes. NEPmax was higher at the highest and lowest sites, approximately –7.4 ± 0.9 and –6.7 ± 0.6 μmol CO2 m–2 s–1 (mean ± standard error), respectively, but smaller at the intermediate altitude sites (3800 and 4000 m). The altitudinal pattern of maximum gross primary production was similar to that of NEPmax. The Redaytime, however, was significantly higher at the lowest altitude (3.4 ± 0.3 μmol CO2 m–2 s–1) than at the other three altitudes. (ii) Altitudinal variation of vegetation biomass: The above-ground biomass was higher at the highest altitude (154 ± 27 g DW m–2) than at the other altitudes, which we attribute mainly to the large biomass in cushion plants at the highest altitude. The small above-ground biomass at the lower altitudes was probably due to heavy grazing during the growing season. (iii) Features of ecosystem CO2 fluxes: Redaytime and GPP were positively correlated with above-ground biomass. The low ratio of Redaytime to GPP at either the measurement point or the site level suggests that CO2 uptake efficiency tends to be higher at higher altitudes, which indicates a high potential sink strength for atmospheric CO2 despite the low temperature at high altitudes. The results suggest that the effect of grazing intensity on ecosystem carbon dynamics, partly by decreasing vegetation biomass, should be clarified further; Recent studies have recognized the alpine grasslands on the Qinghai-Tibetan plateau as a significant sink for atmospheric CO2. The carbon-sink strength may differ among grassland ecosystems at various altitudes because of contrasting biotic and physical environments. This study aims (i) to clarify the altitudinal pattern of ecosystem CO2 fluxes, including gross primary production (GPP), daytime ecosystem respiration (Re-daytime) and net ecosystem production (NEP), during the period with peak above-ground biomass; and (ii) to elucidate the effects of biotic and abiotic factors on the altitudinal variation of ecosystem CO2 fluxes.
文献类型期刊论文
条目标识符http://210.75.249.4/handle/363003/41043
专题中国科学院西北高原生物研究所
推荐引用方式
GB/T 7714
Hirota, Mitsuru,Zhang, Pengcheng,Gu, Song,et al. Altitudinal variation of ecosystem CO2 fluxes in an alpine grassland from 3600 to 4200 m[J]. JOURNAL OF PLANT ECOLOGY, Mitsuru Hirota;Pengcheng Zhang;古松;杜明远;Ayako Shimono;Haihua Shen;李英年;唐艳鸿.Altitudinal variation of ecosystem CO2 fluxes in an alpine grassland from 3600 to 4200 m,Journal of Plant Ecology,2009,2(4):197-205,2009.
APA Hirota, Mitsuru.,Zhang, Pengcheng.,Gu, Song.,Du, Mingyuan.,Shimono, Ayako.,...&Tang, Yanhong.(2009).Altitudinal variation of ecosystem CO2 fluxes in an alpine grassland from 3600 to 4200 m.JOURNAL OF PLANT ECOLOGY.
MLA Hirota, Mitsuru,et al."Altitudinal variation of ecosystem CO2 fluxes in an alpine grassland from 3600 to 4200 m".JOURNAL OF PLANT ECOLOGY (2009).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Hirota, Mitsuru]的文章
[Zhang, Pengcheng]的文章
[Gu, Song]的文章
百度学术
百度学术中相似的文章
[Hirota, Mitsuru]的文章
[Zhang, Pengcheng]的文章
[Gu, Song]的文章
必应学术
必应学术中相似的文章
[Hirota, Mitsuru]的文章
[Zhang, Pengcheng]的文章
[Gu, Song]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。