NWIPB OpenIR
Drug Repositioning by Kernel-Based Integration of Molecular Structure, Molecular Activity, and Phenotype Data
Wang, Yongcui ; Chen, Shilong ; Deng, Naiyang ; Wang, Yong ; Wang, Y (reprint author), Chinese Acad Sci, Acad Math & Syst Sci, Natl Ctr Math & Interdisciplinary Sci, Beijing, Peoples R China.
2013-11-11
发表期刊PLOS ONE ; Wang, YC; Chen, SL; Deng, NY; Wang, Y.Drug Repositioning by Kernel-Based Integration of Molecular Structure, Molecular Activity, and Phenotype Data,PLOS ONE,2013,8(11):
摘要Computational inference of novel therapeutic values for existing drugs, i.e., drug repositioning, offers the great prospect for faster and low-risk drug development. Previous researches have indicated that chemical structures, target proteins, and side-effects could provide rich information in drug similarity assessment and further disease similarity. However, each single data source is important in its own way and data integration holds the great promise to reposition drug more accurately. Here, we propose a new method for drug repositioning, PreDR (Predict Drug Repositioning), to integrate molecular structure, molecular activity, and phenotype data. Specifically, we characterize drug by profiling in chemical structure, target protein, and side-effects space, and define a kernel function to correlate drugs with diseases. Then we train a support vector machine (SVM) to computationally predict novel drug-disease interactions. PreDR is validated on a well-established drug-disease network with 1,933 interactions among 593 drugs and 313 diseases. By cross-validation, we find that chemical structure, drug target, and side-effects information are all predictive for drug-disease relationships. More experimentally observed drug-disease interactions can be revealed by integrating these three data sources. Comparison with existing methods demonstrates that PreDR is competitive both in accuracy and coverage. Follow-up database search and pathway analysis indicate that our new predictions are worthy of further experimental validation. Particularly several novel predictions are supported by clinical trials databases and this shows the significant prospects of PreDR in future drug treatment. In conclusion, our new method, PreDR, can serve as a useful tool in drug discovery to efficiently identify novel drug-disease interactions. In addition, our heterogeneous data integration framework can be applied to other problems.; Computational inference of novel therapeutic values for existing drugs, i.e., drug repositioning, offers the great prospect for faster and low-risk drug development. Previous researches have indicated that chemical structures, target proteins, and side-effects could provide rich information in drug similarity assessment and further disease similarity. However, each single data source is important in its own way and data integration holds the great promise to reposition drug more accurately. Here, we propose a new method for drug repositioning, PreDR (Predict Drug Repositioning), to integrate molecular structure, molecular activity, and phenotype data. Specifically, we characterize drug by profiling in chemical structure, target protein, and side-effects space, and define a kernel function to correlate drugs with diseases. Then we train a support vector machine (SVM) to computationally predict novel drug-disease interactions. PreDR is validated on a well-established drug-disease network with 1,933 interactions among 593 drugs and 313 diseases. By cross-validation, we find that chemical structure, drug target, and side-effects information are all predictive for drug-disease relationships. More experimentally observed drug-disease interactions can be revealed by integrating these three data sources. Comparison with existing methods demonstrates that PreDR is competitive both in accuracy and coverage. Follow-up database search and pathway analysis indicate that our new predictions are worthy of further experimental validation. Particularly several novel predictions are supported by clinical trials databases and this shows the significant prospects of PreDR in future drug treatment. In conclusion, our new method, PreDR, can serve as a useful tool in drug discovery to efficiently identify novel drug-disease interactions. In addition, our heterogeneous data integration framework can be applied to other problems.
文献类型期刊论文
条目标识符http://210.75.249.4/handle/363003/47233
专题中国科学院西北高原生物研究所
推荐引用方式
GB/T 7714
Wang, Yongcui,Chen, Shilong,Deng, Naiyang,et al. Drug Repositioning by Kernel-Based Integration of Molecular Structure, Molecular Activity, and Phenotype Data[J]. PLOS ONE, Wang, YC; Chen, SL; Deng, NY; Wang, Y.Drug Repositioning by Kernel-Based Integration of Molecular Structure, Molecular Activity, and Phenotype Data,PLOS ONE,2013,8(11):,2013.
APA Wang, Yongcui,Chen, Shilong,Deng, Naiyang,Wang, Yong,&Wang, Y .(2013).Drug Repositioning by Kernel-Based Integration of Molecular Structure, Molecular Activity, and Phenotype Data.PLOS ONE.
MLA Wang, Yongcui,et al."Drug Repositioning by Kernel-Based Integration of Molecular Structure, Molecular Activity, and Phenotype Data".PLOS ONE (2013).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Yongcui]的文章
[Chen, Shilong]的文章
[Deng, Naiyang]的文章
百度学术
百度学术中相似的文章
[Wang, Yongcui]的文章
[Chen, Shilong]的文章
[Deng, Naiyang]的文章
必应学术
必应学术中相似的文章
[Wang, Yongcui]的文章
[Chen, Shilong]的文章
[Deng, Naiyang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。