NWIPB OpenIR
Forests buffer thermal fluctuation better than non-forests
Lin, Hua; Tu, Chengyi; Fang, Junyong; Gioli, Beniamino; Loubet, Benjamin; Gruening, Carsten; Zhou, Guoyi; Beringer, Jason; Huang, Jianguo; Dusek, Jiri; Liddell, Michael; Buysse, Pauline; Shi, Peili; Song, Qinghai; Han, Shijie; Magliulo, Vincenzo; Li, Yingnian; Grace, John
2020
发表期刊AGRICULTURAL AND FOREST METEOROLOGY
卷号288
摘要With the increase in intensity and frequency of extreme climate events, interactions between vegetation and local climate are gaining more and more attention. Both the mean temperature and the temperature fluctuations of vegetation will exert thermal influence on local climate and the life of plants and animals. Many studies have focused on the pattern in the mean canopy surface temperature of vegetation, whereas there is still no systematic study of thermal buffer ability (TBA) of different vegetation types across global biomes. We developed a new method to measure TBA based on the rate of temperature increase, requiring only one radiometer. With this method, we compared TBA of ten vegetation types with contrasting structures, e.g. from grasslands to forests, using data from 133 sites globally. TBA ranged from 5.2 to 21.2 across these sites and biomes. Forests and wetlands buffer thermal fluctuation better than non-forests (grasslands, savannas, and croplands), and the TBA boundary between forests and non-forests was typically around 10. Notably, seriously disturbed and young planted forests displayed a greatly reduced TBA as low as that of non-forests at high latitudes. Canopy height was a primary controller of TBA of forests, while the TBA of grasslands and savannas were mainly determined by energy partition, water availability, and carbon sequestration rates. Our research suggests that both mean values and fluctuations in canopy surface temperature should be considered to predict the risk for plants under extreme events. Protecting mature forests, both at high and low latitudes, is critical to mitigate thermal fluctuation under extreme events.
关键词Deforestation Global warming Extreme temperature Temperature mitigation Thermal effects Vegetation index
文献类型期刊论文
条目标识符http://210.75.249.4/handle/363003/60297
专题中国科学院西北高原生物研究所
推荐引用方式
GB/T 7714
Lin, Hua,Tu, Chengyi,Fang, Junyong,et al. Forests buffer thermal fluctuation better than non-forests[J]. AGRICULTURAL AND FOREST METEOROLOGY,2020,288.
APA Lin, Hua.,Tu, Chengyi.,Fang, Junyong.,Gioli, Beniamino.,Loubet, Benjamin.,...&Grace, John.(2020).Forests buffer thermal fluctuation better than non-forests.AGRICULTURAL AND FOREST METEOROLOGY,288.
MLA Lin, Hua,et al."Forests buffer thermal fluctuation better than non-forests".AGRICULTURAL AND FOREST METEOROLOGY 288(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lin, Hua]的文章
[Tu, Chengyi]的文章
[Fang, Junyong]的文章
百度学术
百度学术中相似的文章
[Lin, Hua]的文章
[Tu, Chengyi]的文章
[Fang, Junyong]的文章
必应学术
必应学术中相似的文章
[Lin, Hua]的文章
[Tu, Chengyi]的文章
[Fang, Junyong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。