NWIPB OpenIR
Soil Moisture Variations in Response to Precipitation Across Different Vegetation Types on the Northeastern Qinghai-Tibet Plateau
Dai, LC; Fu, RY; Guo, XW; Du, YG; Zhang, FW; Cao, GM
2022
发表期刊FRONTIERS IN PLANT SCIENCE
卷号13
摘要An understanding of soil moisture conditions is crucial for hydrological modeling and hydrological processes. However, few studies have compared the differences between the dynamics of soil moisture content and soil moisture response to precipitation infiltration under different types of vegetation on the Qinghai-Tibet Plateau (QTP). In this study, a soil moisture sensor was used for continuous volumetric soil moisture measurements during 2015 and 2016, with the aim of exploring variations in soil moisture and its response to precipitation infiltration across two vegetation types (alpine meadow and alpine shrub). Our results showed that temporal variations in soil moisture at the surface (0-20 cm) and middle soil layers (40-60 cm) were consistent with precipitation patterns for both vegetation types. However, there was a clear lag in the soil moisture response to precipitation for the deep soil layers (80-100 cm). Soil moisture content was found to be significantly positively related to precipitation and negatively related to air temperature. Aboveground biomass was significantly negatively associated with the surface soil moisture content (0-20 cm) during the growing season. Statistically significant differences were observed between the soil water content of the surface, middle, and deep soil layers for the two vegetation types (p < 0.05). Soil moisture (19.81%) in the surface soil layer was significantly lower than that in the deep soil layer (24.75%) for alpine shrubs, and the opposite trend was observed for alpine meadows. The maximum infiltration depth of alpine shrubs was greater than that of alpine meadows under extremely high-precipitation events, which indicates that alpine shrubs might be less susceptible to surface runoff under extreme precipitation events. Furthermore, low precipitation amounts did not affect precipitation infiltration for either vegetation type, whereas the infiltration depth increased with precipitation for both vegetation types. Our results suggest that a series of small precipitation events may not have the same effect on soil moisture as a single large precipitation event that produces the equivalent total rainfall.
收录类别SCIE
文献类型期刊论文
条目标识符http://210.75.249.4/handle/363003/61245
专题中国科学院西北高原生物研究所
推荐引用方式
GB/T 7714
Dai, LC,Fu, RY,Guo, XW,et al. Soil Moisture Variations in Response to Precipitation Across Different Vegetation Types on the Northeastern Qinghai-Tibet Plateau[J]. FRONTIERS IN PLANT SCIENCE,2022,13.
APA Dai, LC,Fu, RY,Guo, XW,Du, YG,Zhang, FW,&Cao, GM.(2022).Soil Moisture Variations in Response to Precipitation Across Different Vegetation Types on the Northeastern Qinghai-Tibet Plateau.FRONTIERS IN PLANT SCIENCE,13.
MLA Dai, LC,et al."Soil Moisture Variations in Response to Precipitation Across Different Vegetation Types on the Northeastern Qinghai-Tibet Plateau".FRONTIERS IN PLANT SCIENCE 13(2022).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Dai, LC]的文章
[Fu, RY]的文章
[Guo, XW]的文章
百度学术
百度学术中相似的文章
[Dai, LC]的文章
[Fu, RY]的文章
[Guo, XW]的文章
必应学术
必应学术中相似的文章
[Dai, LC]的文章
[Fu, RY]的文章
[Guo, XW]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。