NWIPB OpenIR
Interactions between soil organic matter chemical structure and microbial communities determine the spatial variation of soil basal respiration in boreal forests
Yang, Yan; Cheng, Shulan; Fang, Huajun; Guo, Yifan; Li, Yuna; Zhou, Yi
2023
发表期刊APPLIED SOIL ECOLOGY
卷号183
摘要Interactions between soil organic matter (SOM) composition and microbial communities determine soil basal respiration (BR, SOM-derived CO2). However, few studies have investigated the relative importance of SOM chemical structure, microbial community composition, and soil environmental factors to the spatial variability of soil BR on a large scale. Here, organic and mineral layer soils were collected along a 650-km boreal forest transect in Northeast China. Combining 13C-nuclear magnetic resonance spectroscopy and high-throughput sequencing techniques, SOM chemical structure, microbial community composition, and soil physicochemical properties were determined to investigate the biotic and abiotic drivers of soil BR. Soil BR, microbial communities, and soil physicochemical properties exhibited significant spatial heterogeneity across sites, but the variations were independent of latitude regardless of soil layer. Soil BR rates were significantly higher in the organic layer than in the mineral layer (0.82 vs. 0.31 CO2-C kg- 1soil-1 h-1, P < 0.001). Multi-model averaging and partial regression showed that SOM chemical structure exhibited the strongest control on the spatial variation of soil BR (contributing 23.0 %), followed by the organic layer soil C/N ratio (contributing 17 %). However, only soil C/N ratio was the most important predictor of soil BR variation in the mineral layer. Copiotrophic bacteria had a higher impact on soil BR than oligotrophic bacteria. In addition, soil physicochemical properties (i.e. pH, mechanical composition) indirectly affected soil BR through regulating soil microbial composition, especially bacteria. Overall, these results highlighted that SOM chemical structure directly or indirectly affected the microbial decomposition of SOM, and contributed more relative to SOM quality. These findings should be incorporated into ecosystem process models to better predict the response of boreal forest soil C emissions to climate change.
收录类别SCIE
文献类型期刊论文
条目标识符http://210.75.249.4/handle/363003/61717
专题中国科学院西北高原生物研究所
推荐引用方式
GB/T 7714
Yang, Yan,Cheng, Shulan,Fang, Huajun,et al. Interactions between soil organic matter chemical structure and microbial communities determine the spatial variation of soil basal respiration in boreal forests[J]. APPLIED SOIL ECOLOGY,2023,183.
APA Yang, Yan,Cheng, Shulan,Fang, Huajun,Guo, Yifan,Li, Yuna,&Zhou, Yi.(2023).Interactions between soil organic matter chemical structure and microbial communities determine the spatial variation of soil basal respiration in boreal forests.APPLIED SOIL ECOLOGY,183.
MLA Yang, Yan,et al."Interactions between soil organic matter chemical structure and microbial communities determine the spatial variation of soil basal respiration in boreal forests".APPLIED SOIL ECOLOGY 183(2023).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yang, Yan]的文章
[Cheng, Shulan]的文章
[Fang, Huajun]的文章
百度学术
百度学术中相似的文章
[Yang, Yan]的文章
[Cheng, Shulan]的文章
[Fang, Huajun]的文章
必应学术
必应学术中相似的文章
[Yang, Yan]的文章
[Cheng, Shulan]的文章
[Fang, Huajun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。