NWIPB OpenIR
Different inter-annual responses to availability and form of nitrogen explain species coexistence in an alpine meadow community after release from grazing
Song, Ming-Hua ; Yu, Fei-Hai ; Ouyang, Hua ; Cao, Guang-Min ; Xu, Xing-Liang ; Cornelissen, Johannes H. C.
2012-10-01
发表期刊GLOBAL CHANGE BIOLOGY ; Wang, YQ; Zhang, B; Liu, BL; Zhang, HG; Liu, DC.Different inter-annual responses to availability and form of nitrogen explain species coexistence in an alpine meadow community after release from grazing,GLOBAL CHANGE BIOLOGY,2012,18(10):3100-3111
摘要Plant species and functional groups in nitrogen (N) limited communities may coexist through strong eco-physiological niche differentiation, leading to idiosyncratic responses to multiple nutrition and disturbance regimes. Very little is known about how such responses depend on the availability of N in different chemical forms. Here we hypothesize that idiosyncratic year-to-year responses of plant functional groups to availability and form of nitrogen explain species coexistence in an alpine meadow community after release from grazing. We conducted a 6year N addition experiment in an alpine meadow on the Tibetan Plateau released from grazing by livestock. The experimental design featured three N forms (ammonium, nitrate, and ammonium nitrate), crossed with three levels of N supply rates (0.375, 1.500 and 7.500gNm-2yr-1), with unfertilized treatments without and with light grazing as controls. All treatments showed increasing productivity and decreasing species richness after cessation of grazing and these responses were stronger at higher N rates. Although N forms did not affect aboveground biomass at community level, different functional groups did show different responses to N chemical form and supply rate and these responses varied from year to year. In support of our hypothesis, these idiosyncratic responses seemed to enable a substantial diversity and biomass of sedges, forbs, and legumes to still coexist with the increasingly productive grasses in the absence of grazing, at least at low and intermediate N availability regimes. This study provides direct field-based evidence in support of the hypothesis that idiosyncratic and annually varying responses to both N quantity and quality may be a key driver of community structure and species coexistence. This finding has important implications for the diversity and functioning of other ecosystems with spatial and temporal variation in available N quantity and quality as related to changing atmospheric N deposition, land-use, and climate-induced soil warming.; Plant species and functional groups in nitrogen (N) limited communities may coexist through strong eco-physiological niche differentiation, leading to idiosyncratic responses to multiple nutrition and disturbance regimes. Very little is known about how such responses depend on the availability of N in different chemical forms. Here we hypothesize that idiosyncratic year-to-year responses of plant functional groups to availability and form of nitrogen explain species coexistence in an alpine meadow community after release from grazing. We conducted a 6year N addition experiment in an alpine meadow on the Tibetan Plateau released from grazing by livestock. The experimental design featured three N forms (ammonium, nitrate, and ammonium nitrate), crossed with three levels of N supply rates (0.375, 1.500 and 7.500gNm-2yr-1), with unfertilized treatments without and with light grazing as controls. All treatments showed increasing productivity and decreasing species richness after cessation of grazing and these responses were stronger at higher N rates. Although N forms did not affect aboveground biomass at community level, different functional groups did show different responses to N chemical form and supply rate and these responses varied from year to year. In support of our hypothesis, these idiosyncratic responses seemed to enable a substantial diversity and biomass of sedges, forbs, and legumes to still coexist with the increasingly productive grasses in the absence of grazing, at least at low and intermediate N availability regimes. This study provides direct field-based evidence in support of the hypothesis that idiosyncratic and annually varying responses to both N quantity and quality may be a key driver of community structure and species coexistence. This finding has important implications for the diversity and functioning of other ecosystems with spatial and temporal variation in available N quantity and quality as related to changing atmospheric N deposition, land-use, and climate-induced soil warming.
文献类型期刊论文
条目标识符http://210.75.249.4/handle/363003/41947
专题中国科学院西北高原生物研究所
推荐引用方式
GB/T 7714
Song, Ming-Hua,Yu, Fei-Hai,Ouyang, Hua,et al. Different inter-annual responses to availability and form of nitrogen explain species coexistence in an alpine meadow community after release from grazing[J]. GLOBAL CHANGE BIOLOGY, Wang, YQ; Zhang, B; Liu, BL; Zhang, HG; Liu, DC.Different inter-annual responses to availability and form of nitrogen explain species coexistence in an alpine meadow community after release from grazing,GLOBAL CHANGE BIOLOGY,2012,18(10):3100-3111,2012.
APA Song, Ming-Hua,Yu, Fei-Hai,Ouyang, Hua,Cao, Guang-Min,Xu, Xing-Liang,&Cornelissen, Johannes H. C..(2012).Different inter-annual responses to availability and form of nitrogen explain species coexistence in an alpine meadow community after release from grazing.GLOBAL CHANGE BIOLOGY.
MLA Song, Ming-Hua,et al."Different inter-annual responses to availability and form of nitrogen explain species coexistence in an alpine meadow community after release from grazing".GLOBAL CHANGE BIOLOGY (2012).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Song, Ming-Hua]的文章
[Yu, Fei-Hai]的文章
[Ouyang, Hua]的文章
百度学术
百度学术中相似的文章
[Song, Ming-Hua]的文章
[Yu, Fei-Hai]的文章
[Ouyang, Hua]的文章
必应学术
必应学术中相似的文章
[Song, Ming-Hua]的文章
[Yu, Fei-Hai]的文章
[Ouyang, Hua]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。