NWIPB OpenIR
Shifts in priming partly explain impacts of long-term nitrogen input in different chemical forms on soil organic carbon storage
Song, Minghua; Guo, Yu; Yu, Feihai; Zhang, Xianzhou; Cao, Guangmin; Cornelissen, Johannes H. C.
2018
发表期刊GLOBAL CHANGE BIOLOGY
卷号24期号:9
摘要Input of labile organic carbon can enhance decomposition of extant soil organic carbon (SOC) through priming. We hypothesized that long-term nitrogen (N) input in different chemical forms alters SOC pools by altering priming effects associated with N-mediated changes in plants and soil microbes. The hypothesis was tested by integrating field experimental data of plants, soil microbes and two incubation experiments with soils that had experienced 10years of N enrichment with three chemical forms (ammonium, nitrate and both ammonium and nitrate) in an alpine meadow on the Tibetan Plateau. Incubations with glucose-C-13 addition at three rates were used to quantify effects of exogenous organic carbon input on the priming of SOC. Incubations with microbial inocula extracted from soils that had experienced different long-term N treatments were conducted to detect effects of N-mediated changes in soil microbes on priming effects. We found strong evidence and a mechanistic explanation for alteration of SOC pools following 10years of N enrichment with different chemical forms. We detected significant negative priming effects both in soils collected from ammonium-addition plots and in sterilized soils inoculated with soil microbes extracted from ammonium-addition plots. In contrast, significant positive priming effects were found both in soils collected from nitrate-addition plots and in sterilized soils inoculated with soil microbes extracted from nitrate-addition plots. Meanwhile, the abundance and richness of graminoids were higher and the abundance of soil microbes was lower in ammonium-addition than in nitrate-addition plots. Our findings provide evidence that shifts toward higher graminoid abundance and changes in soil microbial abundance mediated by N chemical forms are key drivers for priming effects and SOC pool changes, thereby linking human interference with the N cycle to climate change.
关键词alpine meadow functional groups nitrogen chemical form priming effect soil microbes soil organic carbon Tibetan Plateau
文献类型期刊论文
条目标识符http://210.75.249.4/handle/363003/59983
专题中国科学院西北高原生物研究所
推荐引用方式
GB/T 7714
Song, Minghua,Guo, Yu,Yu, Feihai,et al. Shifts in priming partly explain impacts of long-term nitrogen input in different chemical forms on soil organic carbon storage[J]. GLOBAL CHANGE BIOLOGY,2018,24(9).
APA Song, Minghua,Guo, Yu,Yu, Feihai,Zhang, Xianzhou,Cao, Guangmin,&Cornelissen, Johannes H. C..(2018).Shifts in priming partly explain impacts of long-term nitrogen input in different chemical forms on soil organic carbon storage.GLOBAL CHANGE BIOLOGY,24(9).
MLA Song, Minghua,et al."Shifts in priming partly explain impacts of long-term nitrogen input in different chemical forms on soil organic carbon storage".GLOBAL CHANGE BIOLOGY 24.9(2018).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Song, Minghua]的文章
[Guo, Yu]的文章
[Yu, Feihai]的文章
百度学术
百度学术中相似的文章
[Song, Minghua]的文章
[Guo, Yu]的文章
[Yu, Feihai]的文章
必应学术
必应学术中相似的文章
[Song, Minghua]的文章
[Guo, Yu]的文章
[Yu, Feihai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。